29" Annual Fall Field Frolic!!

Department of Geological Sciences
California State University Northridge
August 24-27, 2011

Tuweep, or not Tuweep, that is
the question...

— =

- Zion N.P. | Coral Pink Sand | Tuweep, AZ
Campsites:

Wednesday Aug. 24 — Zion National Park, Utah

Thursday Aug. 25 — Coral Pink Sand Dunes State Park, Utah

Friday Aug. 26 — Tuweep (a.k.a. Toroweap), Grand Canyon
National Park, 3000 vertical feet above the Colorado River!

Rough itinerary: Depart 8 a.m. on the 24", return late afternoon of
the 27". Highlights include Zion Narrows hike (weather permitting);
coral... pink... sand... dunes!!!; Lava falls, Grand Canyon
stratigraphic section, and much more!

Trip Leaders: R. Heermance, D. Liggett, and D. Yule

Contact Mari Flores (mari.flores@csun.edu; 818-677-3541) by Aug.
1, 2011 to reserve a spot. A $25 deposit is required.




Page

4-6

8-10

11-13
14-47
48-56

57-64

Field Frolic 2011 Table of Contents

OVERVIEW INFO

[tinerary
Route Maps

Topography of the Basin and Range Figure

SELECTED READINGS

Virgin River Gorge Information
Basin & Range Extension
Grand Canyon Geology
Colorado Plateau Evolution

Hurricane Fault



To Weep or not Tuweep. Field Frolic Itinerary 2011

The 2011 Fall Field Frolic will travel ~1000 miles from Los Angeles into the
southwestern corner of the Colorado Plateau. During our travels, we will observe
Paleozoic and Mesozoic strata, Quaternary volcanoes and faults, and impressive
sand dunes and canyons.

ITINERARY (subject to change)

DAY 1 (Wed, Aug 24):

Depart CSUN (A) at 8 AM
and drive east on 210 along the
southern edge of the San
Gabriel Mts. Turn north on [-15
and cross the San Andreas Fault
just south of Cajon Pass
between the San Gabriel and
San Bernardino Mts. We will
continue across the Mojave
Desert, stopping for lunch in
Baker, CA. After lunch we will
continue on [-15 through Las
Vegas and St. George, arriving in Zion National Park (B) in the late afternoon. The
afternoon and evening can be spent walking in the Zion Narrows, swimming in the
Virgin River, visiting the Zion Visitor Center, or hanging out at camp.
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DAY 2 (Th, Aug 25):

Return to Zion Canyon to discuss the stratigraphy and formation of the area.
If time allows, we will take one of the many hikes within Zion Canyon. ~11 AM we
will drive towards the eastern park entrance and stop for lunch at Checkerboard
Mesa. After lunch, we will continue on towards Mt. Carmel Junction, stopping to
investigate Cretaceous strata along the way. We will arrive Coral Pink Sand Dunes
State Park (C) in the mid-afternoon in time to explore the area.

DAY 3 (Fr, Aug 26):

Drive south from the sand dunes towards Tuweep (D) on the inner gorge of
the Grand Canyon. The plan is to arrive in the late morning, and spend the day
exploring the Quaternary volcanoes, viewing the stratigraphy of the Grand Canyon,
and discussing the complex (and controversial) history of the area.

DAY 4 (Sat, Aug 27):

Drive to St. George, UT (E), with a stop at the Hurricane Fault. We'll stop for
lunch outside of St. George, and depart for home in the early afternoon.
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Chapter 9/Normal Faults 259

Figure 9-11. Topography of the Basin and Range Province, western United States, part of a shaded-relief
image prepared by Thelin and Pike (1991) by digitizing elevation values at intervals of 805 m and illuminat-
ing the resulting digital elevation model from the west-northwest, 25° above the horizon. North is approxi-
mately toward the top of page. Vertical exaggeration 2X. Black area at upper right is Great Salt Lake; flat area
farther north is Snake River Plain (cf. Fig. 9-12). Basin and Range Province extends from Wasatch fault, east of
Great Salt Lake, to eastern front of Sierra Nevada (Idwer left corner). Albers Equal-Area Conic Projection.
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Geological Society of America Centennial Field Guide—Cordilleran Section, 1987

Virgin River Gorge; Boundary between the Colorado Plateau and

the Great Basin in northwestern Arizona

R. L. Langenheim, Jr., Department of Geology, 245 NHB, 1301 West Green Street, University of Illinois, Urbana, 1llinois 61801
M. K. Schulmeister, Illinois State Water Survey, 101 Island Avenue, Batavia, Illinois 60510 h

LOCATION

The Virgin River Gorge and one of its tributaries are tra-
versed by I-15 between milepost 12, about 13 mi (21 km) east of
Mesquite, Nevada, and Milepost 28, about 12 mi (19 km) west of
St: George, Utah (Fig. 1). Geologic features are readily observa-
ble from the road and from a scenic viewpoint in the Virgin River
Canyon Recreation Area, which is entered from an interchange
between mileposts 18 and 19. The site is in the northern half of
the Purgatory Canyon, Arizona, 7%-minute Quadrangle and in
the northeastern quarter of the Littlefield, Arizona, 15-Minute
Quadrangle.

SIGNIFICANCE

The Virgin River crosses the boundary between the Colo-
rado Plateau and the Basin and Range physiographic province in
a deep gorge separating the Beaverdam Mountains and Virgin
Mountains (Fig. 1). Little-deformed, nearly flat-lying rocks of the
westernmost plateau are well exposed east of the “Narrows.” The
gorge cuts across a broad anticline broken by numerous basin-
and-range-type faults. The Grand Wash fault, the western
boundary of the Colorado Plateau, is not obvious from the road,
but is well exposed. The Beaver Dam-Virgin Mountain block is
separated from the intermountain valley containing Beaverdam
Wash and the Virgin River by a major range-front fault at the
lower end of the Narrows. Late Cambrian through Middle Per-
mian rocks exposed in the gorge (Fig. 1) are characteristic of the
transition from miogeosynclinal deposition, dominant to the
northwest, and platform deposits on the plateau to the east. In
addition, the Narrows is a fine example of the results of acceler-
ated erosion that accompanied elevation of the Colorado Plateau
and extensional.deformation in the Basin and Range during the
late Tertiary and Quaternary. Ancient channel and terrace depos-
its are prominent in the gorge. Classic alluvial fans, basin-filling
deposits, and caliche crusts border the west face of the Beaver
Dam-Virgin Mountains and the intermontane valley to the west.

SITE DESCRIPTION

Late and Middle Cambrian Bonanza King Dolomite, Dun-
derberg Shale, and Nopah Dolomite, Late Devonian Muddy
Peak Limestone, Mississippian Monte Cristo Group, and
Mississippian-Pennsylvanian Callville Limestone crop out along
the road in the Narrows between milepost 12.8 at the western end
of the gorge and milepost 17.3, where the Sullivans Canyon and
Cedar Wash faults cross the highway (Fig. 1).

The Cambrian Bonanza King Dolomite and Nopah Dolo-
mite crop out in steep rounded cliffs and benches and the
intervening Dunderberg Shale forms the most prominent of the
benches between mileposts 13.5 and 16.8 (Figs. 1, 2). The Bo-
nanza King Dolomite in the vicinity of the gorge is brown-
weathering, fine- to medium-grained dolomite with 33 ft (9 m) of
interbedded limestone and dolomite resting on a notably glauco-
nitic layer near the top (Steed, 1980). The glauconitic layer forms
a notable bench and is exposed in a road cut at milepost 15.8.
The Dunderberg Shale, thinly interbedded green shale and do-
lomite, is cleanly exposed in roadcuts near mileposts 13.9 and
16.8. The Nopah Dolomite is mostly very fine-grained, light-gray
dolomite, and weathers somewhat ligher brown than the underly-
ing Bonanza King Dolomite.

Cambrian rocks of the Virgin Gorge are at the southeastern
limit of characteristic Middle and Late Cambrian miogeosyncli-
nal or carbonate platform deposits. The same formations crop
out in the Mormon Mountains, the first range to the northwest,
where the mostly Middle Cambrian Bonanza King Dolomite is
1,914 ft (580 m) thick and the Late Cambrian Nopah Dolomite
is 627 ft (190 m) thick (Wernicke and others, 1984). Farther
northwest, these units are two or three times as thick. Cambrian
rocks to the east on the platform differ greatly; they consist of the
basal Tapeats Sandstone, a middle Bright Angel Shale, and an
upper argillaceous Muav Limestone along the Grand Canyon
(McKee and Resser, 1945). The Grand Canyon rocks, however,
are all older than those in the Virgin Gorge; late-Middle Cam-
brian and Late Cambrian rocks have been removed by erosion at
the canyon.

The hiatus at the post-Nopah Dolomite unconformity in the
Virgin Gorge is represented by some of the uppermost Nopah
Dolomite, the Ordovician Pogonip Dolomite, Eureka Quartzite,
Ely Springs Dolomite, and, probably, part of the basal Devonian
sequence in the Mormon Mountains—more than 1,221 ft (370
m) of rock (Wernicke and others, 1984). Farther west, in the
Arrow Canyon Range, 649.5 ft (197 m) of Silurian Laketown
Dolomite and Early and Middle Devonian Piute Formation in-
tervene between the Ely Springs Dolomite and Late Devonian
rocks. All of these rocks are absent along the Grand Canyon to
the southeast.

Late Devonian Muddy Peak Limestone crops out in the
slope of ledges and cliffs just below the high, sheer cliffs of the
Monte Cristo Group on the north wall of the Narrows between
mileposts 13.5 and 16.8 (Figs. 1, 2, 3). On the south wall of the
canyon the Muddy Peak Limestone outcrop, as well as that of the
Monte Cristo Group, is visible from the road between milepost
13.5 and 14.3. The lower part of the Muddy Peak Limestone is
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Figure 1. Geologic map and columnar section of rocks exposed along I-15 between mileposts 12 and 27,

Arizona,

almost entirely medium-grained dolomite, but includes fairly
prominent nodular layers of flint and rusty-weathering quartzite
(Steed, 1980). The flint and quartzite distinguish the formation
from the underlying Nopah Dolomite. The upper part of the
Muddy Peak Limestone is lighter colored, includes substantial

s

amounts of limestone, and is, in part, fine grained (Steed, 1980).

Devonian rocks thin on the platform to the southeast and
only scattered remnants of Temple Butte Limestone occur in the
eastern part of the Grand Canyon. To the northwest, Devonian
rocks thicken substantially and Early and Middle Devonian sed-
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Figure 2. Late Cambrian through Early Pennsylvanian rocks, view down
the canyon from milepost 17. 1 = bench formed by Dunderberg Shale, 2
= base of Muddy Peak Limestone, 3 = base of Dawn Limestone, 4 = base
of Anchor Limestone, 5 = base of Bullion Limestone, 6 = Arrowhead
Limestone, 7 = base of Callville Limestone, and 8 = top of shaley basal
part of Callville Limestone.

iments are also present. Wernicke and others (1984) reported
726 ft (220 m) of Sultan Limestone in the Mormon Mountains,
and Langenheim and others (1962) cited 1970 ft (597 m) of
Devonian rocks in the Arrow Canyon Range.

The Early and Middle Mississippian Monte Cristo Group
crops out in a high, sheer cliff that rises precipitously above the
ledge and slope exposures of the Muddy Peak Limestone (Figs. 1,
2, 3). The Yellowpine, Arrowhead, and Bullion Limestones are
cleanly exposed in a roadcut from milepost 12.8 through 13.4.
Prominent coral biostromes crop out in the vicinity of milepost
13. The lowermost Dawn Limestone is dominantly medium- to
coarse-grained limestone with minor interbedded dolomite
(Steed, 1980). The formation is chert free, and rests unconform-
ably on the underlying Muddy Peak Limestone. The Anchor
Limestone is sharply delineated by abundant nodular chert inter-
bedded with fine- to coarse-grained bioclastic limestone. The
chert weathers dark brown or black, and the unit forms either an
indentation in the Monte Cristo cliff or a minor bench. The
overlying Bullion Limestone is predominantly very thick-bedded,
coarse-grained, bioclastic limestone and comprises most of the
sheer cliff. The Arrowhead Limestone is composed of thin nodu-
lar bioclastic limestone beds separated by shale breaks. It is read-
ily identified from a distance because it crops out as a
light-colored, narrow stripe two-fifths of the way down the
brown, sheer cliff. The uppermost formation of the Monte Cristo
Group, the Yellowpine Limestone, is thick-bedded, medium- to
coarse-grained limestone in the lower half and very fine-grained,
somewhat thinner bedded limestone in the upper portion. The
formation makes up the upper two-fifths of the sheer cliff and is
abruptly succeeded by bench-forming basal Callville Limestone.

- e iy = i

Figure 3. View west-southwest across the Cedar Wash fault from
“Scenic Viewpoint” in the Virgin River Recreation Area. The Esplanade
Sandstone, Coconino Sandstone, and the Brushy Canyon and Seligman
Members of the Toroweap Formation are exposed in the foreground and
in the prominent butte in the middle of the picture. Cliffs behind are on
the upthrown block of the Cedar Wash fault and expose Cambrian
through Mississippian rocks. The Callville Limestone and Permian rocks
crop out along the skyline, 1 = base of Toroweap Formation. The
Coconino Sandstone is the thin, white, cliffy ledge just below the contact,
2 = base of Monte Cristo Group, 3 = base of shaley bench in lowermost
Callville Limestone, and 4 = base of ledge and cliff sequence in the
Callville Limestone. Smooth slopes rising to the top of the ridge on the
right include Pakoon Dolomite and Supai Group outcrops.

The Dawn Limestone correlates with the Whitmore Wash
Member of the Redwall Limestone on the platform to the south-
east. The Anchor Limestone correlates with the Thunder Springs
Member, the Bullion Limestone with the Mooney Falls Member,
and the Arrowhead and Yellowpipe Limestones with the Horse-
shoe Mesa Member. These units are strikingly uniform and con-
tinuous across the miogeosynclinal-platform boundary, in
marked contrast to patterns in the pre-Mississippian sequence and
in the Carboniferous and pre-Toroweap Limestone rocks above
the Monte Cristo or Redwall Limestone. The Redwall Limestone
thins from about 490.5 ft (148.6 m) in the eastern Grand Canyon
(McKee and Gutschick, 1969) and the Monte Cristo Group
thickens to 924 ft (280 m) in the Mormon Mountains (Wernicke
and others, 1984).

The Late Mississippian and Pennsylvanian Callville Lime-
stone is not exposed at the roadside, but crops out above the
Monte Cristo Group north of the highway from the lower en-
trance of the Narrows to the Cedar Wash fault (Fig. 1), and south
of the highway from the lower entrance of the Narrows to mile-
post 14.4. The basal 62.7 ft (19 m) of the Callville Limestone
crops out in a well-defined bench separating the cliff of the Monte
Cristo Limestone from the markedly cyclic low cliff and bench
succession above. This covered slope is underlain by interbedded
thin limestone and argillaceous beds (Steed, 1980). Very fine-
grained limestone, with chert in nodules and nodular layers, in-
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Comparison of geodetic and geologic data from the Wasatch region,
Utah, and implications for the spectral character of Earth deformation
at periods of 10 to 10 million years

Anke M. Friedrich,' Brian P. Wernicke, and Nathan A. Niemi’

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA

Richard A. Bennett and James L. Davis
Smithsonian Astrophysical Observatory, Harvard University, Cambridge, Massachusetts, USA

Received 22 June 2001; revised 2 June 2002; accepted 21 November 2002; published 15 April 2003.

[1] The Wasatch fault and adjacent fault zones provide an opportunity to compare
present-day deformation rate estimates obtained from space geodesy with geologic
displacement rates over at least four temporal windows, ranging from the last millennium
up to 10 Myr. The three easternmost GPS sites of the Basin and Range Geodetic Network
(BARGEN) at this latitude define a ~130-km-wide region spanning three major normal
faults extending east-west at a total rate of 2.7 + 0.4 mm/yr, with an average regional
strain rate estimated to be 21 + 4 nstrain/yr, about twice the Basin and Range average.
On the Wasatch fault, the vertical component of the geologic displacement rate is 1.7 + 0.5
mm/yr since 6 ka, <0.6 mm/yr since 130 ka, and 0.5-0.7 mm/yr since 10 Ma. However, it
appears likely that at the longest timescale, rates slowed over time, from 1.0 to 1.4 mm/yr
between 10 and 6 Ma to 0.2 to 0.3 mm/yr since 6 Ma. The cumulative vertical
displacement record across all three faults also shows time-variable strain release ranging
from 2 to 4 mm/yr since 10 ka to <1 mm/yr averaged over the past 130 kyr. Conventional
earthquake recurrence models (“Reid-type” behavior) would require an accordingly large
variation in strain accumulation or loading rate on a 10-kyr timescale, for which there
appears to be no obvious geophysical explanation. Alternatively, seismic strain release,
given a wide range of plausible constitutive behaviors for frictional sliding, may be
clustered on the 10-kyr timescale, resulting in the high Holocene rates, with comparatively
low, uniform strain accumulation rates on the 100-kyr timescale (“Wallace-type”
behavior). The latter alternative, combined with observations at the million-year timescale
and the likelihood of a significant contribution of postseismic transients, implies maxima
of spectral amplitude in the velocity field at periods of ~10 Myr (variations in tectonic
loading), ~10 kyr (clustered strain release), and of 100 years (postseismic transients). If
so, measurements of strain accumulation and strain release may be strongly timescale-
dependent for any given fault system.  INDEXx TERMS: 1208 Geodesy and Gravity: Crustal
movements—intraplate (8110); 1243 Geodesy and Gravity: Space geodetic surveys; 7209 Seismology:
Earthquake dynamics and mechanics; 8107 Tectonophysics: Continental neotectonics; 8109 Tectonophysics:
Continental tectonics—extensional (0905); KEYWORDS: geodetic, geologic, fault slip rate, normal fault,
timescale, earthquake cycle

Citation: Friedrich, A. M., B. P. Wernicke, N. A. Niemi, R. A. Bennett, and J. L. Davis, Comparison of geodetic and geologic data
from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years,

J. Geophys. Res., 108(B4), 2199, doi:10.1029/2001JB000682, 2003.

1. Imtroduction

[2] Geodetic data and geological displacement rate data
are the observational basis for physical models of the

"Now at Institute of Geosciences, Potsdam University, Golm, Germany.
2Now at Institute for Crustal Studies, University of Califomnia, Santa
Barbara, California, USA.

Copyright 2003 by the American Geophysical Union.
0148-0227/03/2001JB000682$09.00

earthquake deformation cycle and the assessment of seismic
hazards. In the simplest model, the elastic strain energy
accumulated across locked faults is periodically released
during earthquakes of relatively uniform slip and recurrence
interval, each of which relcases the strain energy accumu-
lated since the last earthquake (Figure la) [Reid, 1910;
Savage and Burford, 1973; Scholz, 1990]. In this model,
far-field displacement, which is proportional to strain accu-
mulation, occurs at a uniform rate and is equal to the
displacement rate recorded by earthquakes on the fault.

ETG 7-1
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Figure 1. Strain release models for earthquakes (Figures 1a—1c are redrawn after Scholz [1990]). (a)
Perfectly periodic model [Reid, 1910], (b) time-predictable model where the size of the last earthquake
predicts the time of the next earthquake [Shimazaki and Nakata, 1980], and (c) slip-predictable model
where the time since the last earthquake predicts the size of the next earthquake [e.g., Shimazaki and
Nakata, 1980]. (d) Clustered strain release and uniform, low strain accumulation, modified after Wallace
[1987]. See color version of this figure in the HTML.

This model was modified to account for the fact that the
interseismic interval and the size of earthquakes on a
particular fault are not perfectly periodic [e.g., Shimazaki
and Nakata, 1980]. One variant is the “time-predictable”
model where each event occurs when a critical amount of
strain energy has accumulated (Figure 1b). In this model,
the slip rate and the size of the last earthquake predict the
time, but not the size, of the next earthquake. Another
variant is the “slip-predictable” model where for any given
event, all strain energy accumulated since the last earth-
quake is released. In this model, the slip rate and the time
since the last earthquake are combined to predict the size,
but not the time, of the next event (Figure Ic).

[3] In terms of both earthquake physics and hazards
analysis, models such as these beg the question [Wallace,
1987; Ward, 1998]: Is the strain release rate of some small
number of earthquakes equal to the long-term strain accu-
mulation rate applied to faults? All three models assume a
constant rate of far-field displacement and strain accumu-
lation, and therefore predict that well-constrained slip his-
tories, determined over several earthquake cycles, will agree
with contemporary interseismic measurements of far-field
displacement. The question is complicated, however, by the

fact that it is not clear to what degree both strain accumu-
lation and release are influenced by local stress diffusion
within a viscous or viscoelastic substrate due to each event
[e.g., Foulger et al., 1992; Hager et al., 1999; Kenner and
Segall, 2000; Wernicke et al., 2000]. Here we evaluate these
issues through comparison of recently acquired geodetic
data with displacement rates derived from paleoseismic and
other geologic data for the Wasatch and related faults, which
are among the best characterized Quatemary fault systems
in the world [e.g., Machette et al., 1992a).

[4] For the Wasatch and a number of other fault zones, an
important consideration in comparing deformation rates on
different timescales is that strain release may occur during
“clusters” of earthquakes, wherein recurrence intervals are
as much as an order of magnitude shorter than during
quiescent periods between clusters [Wallace, 1987; Swan,
1988; Sieh et al., 1989; McCalpin and Nishenko, 1996;
Grant and Sieh, 1994, Marco et al., 1996; Zreda and
Noller, 1998; Rockwell et al., 2000]. Clustering is consistent
with the time-predictable and slip-predictable behavior.
However, because slip per event for most well-documented
fault segments does not appear to be highly variable [e.g.,
Schwartz and Coppersmith, 1984], these models require
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Figure 2. Simplified tectonic map of the northern Basin and Range province, located between the Sierra
Nevada and the Colorado plateau. The BARGEN geodetic velocities [e.g., Bennett et al., 1999] and the
distribution of active normal faults and historic earthquakes are shown. See color version of this figure in

the HTML.

that strain accumulation (via changes in either the far-field
or local processes mentioned above) would vary markedly,
on the same timescale as the clusters. In this event, at any
given time strain accumulation inferred from geodesy and
strain release inferred from paleoseismology should be the
same. On the other hand, far-field strain accumulation may
be constant, generally being lower than seismic strain
release rates during clusters, and higher in between clusters.
In this case, strain release would bear no relation to either a
critical level of strain energy required for slip (time-predict-
able model), nor the amount of strain energy accumulated
since the previous earthquake (slip-predictable model) (Fig-
ure 1d) [Wallace, 1987].

[5]1 The Wasatch fault zone is ideally suited for compar-
isons of strain accumulation and release because the slip
histories of most or all segments of the fault are well known,
and there are good constraints on the longer term slip history
[e.g., Machette et al., 1992a, 1992b; McCalpin and Nish-
enko, 1996; McCalpin and Nelson, 2000; Parry and Bruhn,
1987; Ehlers et al, 2001]. In this paper we present new
geodetic data from the Basin and Range Geodetic Network
(BARGEN) from 1996 to 2000 across the castern Basin and
Range-Colorado Plateau transition region at the latitude of

Salt Lake City and compare them with a synthesis of
published geological displacement rates across the same
region at the 1-kyr, 100-kyr, 1-Myr, and 10-Myr timescales.

2. Neotectonic Setting

[6] The northern Basin and Range province, bounded on
the west by the Sierra Nevada and on the east by the Colorado
Plateau (Figure 2), is a wide (~750 km) region of extended
continental crust. Extension initiated in the Oligocene and
peaked during mid to late Miocene time (~15-10 Ma
[Stockli, 2000]) with a maximum displacement rate near 20
mm/yr [Wernicke and Snow, 1998], resulting in the formation
of range front faults spaced ~30 km apart, separating ~15-
km-wide basins from mountain ranges. Since ~10 Ma the
overall rate of deformation has slowed to about half the
maximum value and includes a major component of right-
lateral shear along the western margin of the province
[Bennett et al., 1998, 1999; Thatcher et al., 1999].

[7] Most range-bounding faults in Nevada and westemn
Utah have been active in Quatemary time [Dohrenwend et
al., 1996; Hecker, 1993]. Regions of modern seismicity,
however, are restricted to three narrow belts, the Eastern
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INTRODUCTION AND REGIONAL
SETTING

Permian rocks of the southern Western
Interior of the United States occupied the west-
central margin of the supercontinent Pangea (Fig.
1) in an area that was part of a vast arid climate
zone (Parrish and Peterson, 1988). The
culmination of the assembly of Pangea resulted
in the extensive Marathon-Ouachita-Appalachian
mountain chain 800 km south and southeast of
the study area. Stresses from continental
collisions caused fracturing and local uplift of
the North American craton including the
Ancestral Rocky Mountains (Kluth and Coney,
1981), adjacent to and east of the study area (Fig.
2). Meanwhile, the long-established passive
margin of western North America was evolving
into the active Cordilleran margin. Thus, the
southern Western Interior formed a southwest-
tapered extension of cratonic North America
bordered to the southeast, south, and west by
active tectonic terranes and to the east by uplift
on the craton. The field area escaped strong
tectonism but was the site of minor tectonic and
epeirogenic movements in the form of
upwarps/arches and intervening basins (Armin,
1987). Late Paleozoic glacially controlled
eustatic cycles (Ross and Ross, 1988) were
superimposed on this complex tectonic and arid
climatic regime.

The arid climate and abundant clastic
sediment sources contributed to the widespread
eolian deposition. Eolian deposits formed in
environments that ranged from eolian sand sheets
and coastal dune fields to vast coastal and inland
ergs (eolian sand seas). Tectonic and eustatic
controls strongly. influenced the details of eolian
sediment dispersal, distribution, geometry, and
preservation (Blakey, 1988; 1996; Blakey et al.,
1988).  Eolian deposits are intimately
interbedded with fluvial, sabkha, coastal-plain,
and shallow marine deposits.
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Permian rocks of the field area (Fig. 3),
though sparsely fossiliferous and subject to
abrupt facies changes, have been correlated in
moderate detail based on locally excellent and
continuous exposures and detailed stratigraphic
analysis (Figs. 4,5). The correlations and
nomenclature presented in this paper follow
those of Blakey (1988), Blakey et al. (1988),
Blakey and Knepp (1989), and Blakey (1990a).

Blakey (1996) recognized and correlated
four widespread and prominent unconformities
(Fig. 6). The unconformities are given letter
designations as follows: P-O (base of Permian),
P-sc (base of Schnebly Hill Formation or
Coconino Sandstone), P-tw (base of Toroweap
Formation or White Rim Sandstone), P-k (base
of Kaibab Formation).

Modern sedimentological studies have been
published on each of the Permian deposits in the
study area. A summary of these studies and their
interpretations is briefly summarized in Figure 6.

PERMIAN ROCKS IN GRAND

CANYON

Permian strata are exposed throughout
Grand Canyon and, and with coeval strata in the
Sedona - Oak Creek Canyon area, record a
complex interplay of eolian, fluvial, and
nearshore marine processes. The Permian
succession comprises the Esplanade Sandstone
of the Supai Group, Hermit Formation, Coconino
Sandstone, and the Toroweap and Kaibab
Formations. The latter forms the prominent cap
rock throughout Grand Canyon. This part of the
field trip will focus on the Coconino, Toroweap,
and Kaibab formations. We will examine
sedimentological characteristics of each unit and
discuss their significance with respect to
depositional settings and regional
paleogeography. Each of the units exhibit major
features that developed in response to regional
climatic, eustatic, and tectonic events.
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Figure 1. Generalized Permian paleogeographic and tectonic map of North America.

Esplanade Sandstone

The Esplanade Sandstone of the Supai
Group crops out throughout Grand Canyon
where it forms a prominent cliff beneath the less
resistant Hermit Formation and in western Grand
Canyon forms broad platforms, hence the name
esplanade (Fig. 7). Although the thickness of the
Esplanade varies throughout the Grand Canyon,
the unit averages about 280 ft (92 m) thick
(McKee, 1982).

In the Grand Canyon the basal third of the
formation comprises slope-forming, fine-grained
units that are overlain by a thick, cliff-forming,
sandstone-dominated sequence (Fig. 8). The
basal slope-forming sequence is heterogeneous,
consisting of reddish, thinly bedded sandstones,
mudstones and subordinate carbonates. The
prominent cliff-forming sandstone contains
abundant sedimentary structures including
upward-coarsening ripple laminae, avalanche
deposits (sand-flow strata) and small-large-scale
trough and planar-tabular cross stratification
that indicate a complex depositional arena.

The depositional settings in which the
Esplanade accumulated include both nearshore
marine and continental environments (McKee,
1982). The slope-forming basal part of the
Esplanade likely was deposited in shallow shelf
areas, although little work has been done on the
unit . Stratification styles within the upper cliff-
forming sandstone, however, strongly indicate
deposition in eolian settings (Blakey, 1990a).
These include the upward-coarsening laminae
that are the products of wind ripple migration
(Hunter, 1977), presence of down-foreset
tapering of sand flows, that represent avalanche
deposits, and rare suspension-deposited laminae
(grain fall deposits). Other features such as
wavy laminae and disrupted laminae suggest
periodic flooding and reworking of these
windblown deposits. Thus, the upper sandstones
in the Esplanade likely record deposition in a
coastal dune complex that experienced episodic
flooding of dune and interdunal areas. An
increase in plant fragments and vertebrate tracks
and trails in outcrops in central parts of the
Grand Canyon (McKee, 1982) and also in
Marble Canyon likewise attest to deposition in
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Figure 3. Permian outcrops (gray) in northern Arizona

westward thickening with sections in western
Grand Canyon up to 1000 feet (300 m) thick
(Beus, 1987).

In the Grand Canyon the Hermit comprises
red-brown mudstones and subordinate,
intercalated, thin-bedded sandstone (McKee,
1982). Deposition occurred in broad, shallow
channels that likely were ephemeral to well
established, channelized high sinuosity streams.
The ephemeral nature of many channel
complexes is indicated by the presence of planar
bedded sandstone and presence of rip-up,
intraformational mudstone clasts. Presence of
large-scale inclined strata containing both trough
and ripple cross stratification indicate that some
of the Hermit stream systems were localized
incised, of high sinuosity, and perennial. The
latter represent the deposits of side and point
bars. The best examples of these are seen in the
Sedona area (Day 2). Many of the channelized
sandstone deposits contain pedogenetically

ﬁ--------------------------‘

modified overbank fine-grained siliciclastics and
carbonates. The carbonates occur as discrete
nodules at the base of many sandstones and
reflect prolonged periods of channel stability and
a semi-arid environment. There are numerous
intraformational carbonate conglomerates in the
Hermnit Formation composed of carbonate clasts
that indicate the erosion of bank-margin calcic
paleosols. These will be best be seen in the stops
in the Oak Creck Canyon. Few other indicators
of arid climatic conditions have been reported
from the Hermit Formation. Blakey (1990b),
however, reports wind ripple laminae from
sandstones near the base of the Hermit
Formation, indicating the onset of increasingly
arid environments.

The upper contact of the Hermit with the
Coconino Sandstone in Grand Canyon is sharp
and represents a prolonged hiatus in deposition
and also erosion preceding the southward
incursion of the Coconino sand sea.
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Coconino Sandstone

One of the most distinctive units in the
Grand Canyon is the early Permian (Leonardian)
Coconino Sandstone (Fig. 10). Extraordinary
exposures occur throughout the Grand Canyon
region and extend into central Arizona (Fig. 11).
The large-scale cross stratified sandstone is
easily identifiable along the canyon walls and
forms a pronounced marker horizon in the
Permian succession. Regional stratigraphic
relationships have been established by McKee
(1933), Blakey and Knepp (1989), Blakey et al.
(1988), and Blakey (1996). Surprisingly,
comparatively few sedimentologic analyses have
been conducted (McKee, 1933; Middleton et al,,
1990).

Thickness of the Coconino is variable across
the outcrop belt, thinning to the west in Grand
Canyon and thickening to the south in the
Sedona - Oak Creek Canyon area. The Coconino
is 600 feet (180 m) thick in the eastern part of
Grand Canyon thinning to 65 feet (20 m) near
Lake Mead and to 60 feet (18 m) in Marble
Canyon. The Coconino pinches out near the
Arizona - Utah border. Along the Mogollon Rim
in the Sedona area the formation is at least 1000
feet (305 m) thick (McKee, 1933). The increase
in thickness of the Coconino to the south is
related to increased rates of subsidence but also
might reflect intertonguing of the Toroweap
Formation with the Coconino.
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Facies changes in both formations are
similar and hence differentiation between the two
is difficult. Blakey and Knepp (1989) proposed
that these thickness variations are controlled to
some extent by regional tectonic elements most
notably the Sedona Arch and Holbrook basin
(Fig. 2). An eolian origin for the Coconino
Sandstone has been supported by sedimentologic
and stratigraphic analyses (McKee 1933;
Middleton et al., 1990). Middleton et al. (1990)
provide a comprehensive discussion of the

depositional systems. The Coconino is
composed of well rounded and well sorted, fine-
to medium-grained sand. Mineralogically, the
unit is a quartz arenite with minor amounts of '
potassium feldspar. Although this degree of
textural and mineralogic maturity is attainable in
high energy, nearshore environments, facies
sequences and regional stratigraphic patterns
indicate that the Coconino represents a
widespread sand sea or erg; the first major sand
sea to develop during the Phanerozoic on the
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ABSTRACT

» Early to Middle Jurassic sedimentary
rocks and their bounding unconformities on

" the Colorado Plateau in northern Arizona and

southern Utah can be divided into six major
. sequences. These sequences, when coupled
_with coeval volcanic successions in the mag-
"matic arc of southern and western Arizona and
eastern California, provide a basis for tec-
tonic interpretation of arc and back-arc
regions.

_ Sequence 1 (Lower Jurassic Wingate
sandstone and Dinosaur Canyon member of the
Moenave Formation) overlies the J-0 unconfor-
mity. Eolian and fluvial strata were depo-
sited on a broad plain inclined gently from
uplifted areas in the early magmatic arc.

The lower part of Sequence 2' (lower
Kayenta Formation and Springdale Sandstone
member of the Moenave Formation) overlies the
sub-Kayenta unconformity. The Mogollon slope
may have been close to the Colorado Plateau
during deposition of Sequence 2, and the
sources of streams draining into the Colorado
Plateau were within a monsoonal belt as the
Colorado Plateau drifted in an arid climate.

The upper part of Sequence 2 (upper
Kayenta Formation and Navajo Sandstone) is
overlain by the J-1 unconformity. Pronounced
subsidence in the western Utah-Idaho trough
contributed to preservation of tremendous
thicknesses of eolian sandstone, and sand was
driven as far south as the magmatic arc in
southern Arizona. Widespread volcanic depo-
sits of a similar age in southern Arizona
reflect deposition in an extensional or
transtensional environment. Numerous red bed
deposits in these ranges may reflect periods
of relative gquiescence in arc activity,
although the correlation of several units in
southern Arizona is not confirmed.

Sequence 3 (Middle Jurassic Temple Cap
Sandstone) lies between the J-1 and J-2
unconformities. The presence of numerous
bentonite horizons within this eolian-sabkha
unit indicates active wvolcanism, although
fewer isotopic dates on volcanic rocks corre-
spond to this time than to other sequences.

Sequence 4 (Lower Page Sandstone and
Carmel Formation) was deposited in a time
when volcanic activity may have reached a
maximum. Bentonite horizons probably derived

In Dunn, G., and McDougall, K., eds.,1993,
Mesozoic Palcogeography of the Western United States-11
Pacific Section SEPM, Book 71, p. 347-375

from explosive eruptions throughout the
Mojave and Sonoran deserts are common in the
Page Sandstone and Carmel Formation, and. some
uplift of the 'area south of the Colorado
Plateau is indicated.

Sequence 5 (Upper Page Sandstone and
Carmel and Entrada Formations) reflects a
complex series of uplift and subsidence
events across the Colorado Plateau and Utah-
Idaho trough. Volcanism in the magmatic arc
persisted well into this period.

Sequence 6 (Curtis Formation and Sum-
merville and Romana Sandstones) reflects dry-
ing upward sequences that represent trans-
gression and regression. Sequence 6 is
truncated by the J-5 unconformity, which
separates Middle from Upper Jurassic strata.

INTRODUCTION

The Mesozoic Cordilleran magmatic arc
was originally referred to as an "Andean" arc
(Burchfiel and Davis, 1972), evoking images
of high-standing volcanic edifices, a well-
developed fold-and-thrust belt, convergent
tectonics, and a topographic barrier between
arc and back-arc. Increasing evidence- sug-
gests that from Late Triassic or Early Juras-
sic time through at least early Middle Juras-
sic time, the northeastern portions of the
arc were low-standing and occupied an
extensional or transtensional regime.

We summarize here data from Arizona and
southern Utah that form the basis of a paleo-
geographic reconstruction of the arc and
back-arc during Late Triassic to Middle
Jurassic time (Fig. 1). We have confined our
synthesis of the magmatic arc to exposures
west of approximately 110°030'. Controversies
and debate are active in the following topics
concerning paleogeography and tectonic recon-
struction: 1) the height and continuity of
the magmatic arc: 1low lying and discontinu-
ous vs. high-standing and continuous topo-
graphic barrier; 2) the nature of the land-
scape between the arc and the present Juras-
sic outcrops on the Colorado Plateau: low
featureless plains or gentle slopes vs.
rugged highlands that strongly influenced
streams in the back-arc area; 3) the dis-
tance between the magmatic arc and the back-
arc area now represented by exposures on the
Colorado Plateau: modern-day configuration
vs. significant translation owing to late
Mesozoic and Cenozoic tectonism; 4) the cor-
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Figure 1. Map of the southern Colorado
plateau and adjacent Basin and Range showing
locations referred to in text, line of
sections in Figure 4, and restorations (after
Marzolf, 1990; 1991) of selected ranges in
southern Nevada and eastern California to
pre-Cenozoic positions. Shaded line shows
present approximate southern margin of Juras-
sic outcrops on the Colorado Plateau.

relation of rock units between the relatively
stable back-arc and the active magmatic arc:
correlation of discrete formations and uncon-
formities wvs. tenuous correlations hampered
by controversial lithostratigraphic and
geochronologic dating.

We propose that the sequences we de-
scribe in general reflect drying-upward
cycles. Drying and wetting refer here to
sedimentological, not climatological, trends
(e.g. Clemmensen and others, 1989). A
sequence that dries upward contains, for
example, sabkha deposits overlain by dune
deposits, or perennial stream deposits over-
lain by ephemeral stream deposits or dunes.

Paleogeographic reconstruction of this
part of the Mesozoic orogen contributes to an
understanding of the tectonic forces active
in the arec and backarc regions, and how

patterns of sedimentation across the region
were affected by these forces.

Early and Middle Jurassic Time Scales

controversy surrounding correlation of
stratigraphic units, especially eolianites,
between the magmatic arc province and Colo-
orado Plateau may stem in part from uncer-
tainties in the wvarious chronostratigraphic
time scales. -The time scales of Haq and
others (1988) and Harland and others (1990)
are very similar for Lower and Middle
Jurassic time (Fig. 2), but deviate
considerably for Upper Jurassic time. We
have therefore adopted the Harland and others
(1990) scale throughout this paper. Bio-
stratigraphic zones of Imlay (1980) are shown
and correlated with the chronostratigraphic
scale of Harland and others (1990; Fig. 1).

Additional precision is added to the
Middle Jurassic portion of the time scale by
40py/39Ar dates by Everett and others (1989)
on bentonite ash from the Judd Hollow Member
of the Carmel Formation (Co-op Creek Member
of Doelling and others, 1989). Limestone
beds containing several ash beds in the Judd
Hollow. Member contain Bajocian/Bathonian
marine fauna (Imlay, 1980) .

REGIONAL STRATIGRAPHY

Mesozoic volcanic and sedimentary rocks
were deposited on a basement of Proterozoic
metamorphic and plutonic rocks overlain Dby
paleozoic stable-margin platform/shelf sedi-
mentary rocks. The northeast-trending pas-
sive margin was truncated in late Paleozoic
time (Walker, 1988; Stone and Stevens, 1988),
and a superposed northwest trend dominated
the configuration of the continental margin
during Jurassic time and has been maintained
to present time. This northwest trend
strongly affected tectonic elements (Fig. 3)
that in turn controlled certain aspects of
sedimentation, including loci of deposition
and source areas.

Lower and Middle Jurassic Strata, Colorado
Plateau and Vicinity

Intr ion

The correlation and depositional his-
tory of the Lower Jurassic Glen Canyon Group
and the Middle Jurassic San Rafael Group has
received thorough recent examination (Peter-
son and Pipiringos, 1979; Pipiringos and
o'sullivan, 1979; Blakey, 1988, 1989; Blakey
and others, 1988; Peterson, 1988a) . We
briefly review these studies and focus on the
interpretation of the several depositional
sequences and the unconformities. The se-
quences, their internal lithostratigraphic
composition, and pounding unconformities are
shown on Figure 4.

Lower Glen Canyon Group 1J-0 to J-sub-Kayen-—
ta (J-sub-Kay) unconformitiesl.

J-0 Unconformity

The J-0 unconformity (Pipiringos and
o'sullivan, 1979) marks the base of the Glen
Canyon Group (as restricted by Dubiel, 1989)
across the southern Colorado Plateau.
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‘Because strata in the overlying Moenave

Formation contain Early Jurassic palynomorphs
underlying Chinle Formation is
iconsidered entirely Late Triassic in age, the
J-0 is believed to mark the Triassic-Jurassic
in this region (Peterson and
Pipiringos, 1979).

The J-0 is regionally a low-angle
unconformity (Blakey, 1990; Marzolf, 1991;
Fig. 5). As much as 24 m of basal conglomer-
ate in the Moenave-Kayenta formation (undi-
vided) overlies the J-0 unconformity west of
the present Colorado Plateau near Las Vegas,
and Marzolf (1991) has traced it into the arc
terrane of southeastern California where it
overlies Paleozoic rocks in the Cowhole Moun-
tains (Fig. 1). Reynolds and others (1989)
reported that Jurassic rocks in the Buckskin-
Harquahala area of western Arizona rest
unconformably on rocks ranging from Protero-
zoic to Middle(?) Triassic in age. In gen-
eral, the low-angle discordance of the J-0
across the Colorado Plateau suggests gentle
epeirogenic up-to-the-southwest tilting of
the region (Blakey, 1990). A few tens of
kilometers off the west and southwest edges

of the present Colorado Plateau, however, the
J-0 represents sharp orogenic uplift (Mar-
zolf, 1991; Reynolds and others, 1989). This

tectonic activity may represent upwarping
associated with the early stages of con-
struction of the Mesozoic Cordilleran arc.

.in southwestern Utah.

Wingate Sandstone and Dinosaur Canyon Member

The lower Glen Canyon Group comprises
the eolian Wingate Sandstone (Blakey and
others, 1988; Nation, 1990) and coeval ephem-
eral stream deposits of the Dinosaur Canyon
Member of the Moenave Formation (Clemmensen
and others, 1989). The two units are coeval
facies that intertongue along a northwest-
trending alignment roughly coincident with
the Zuni lineament (Blakey, 1988) .
Northwest-flowing streams followed broad open
terrain defined by remnants of the pre-J-0
uplift to the southwest and Wingate ergs to
the northeast. The streams were deflected
northward into the southern Utah-Idaho trough
Northerly to westerly
winds deflated the stream courses and
transported fine sand into the western and
southern portions of the Wingate erg. The
nearly opposite paleocurrent flow of the
fluvial-eolian transportation systems proba-
bly trapped much of the sediment on the
south-central Colorado Plateéau (Blakey and
others, 1992). Northwest-moving fluvial sed-
iment was blown back to the southeast and
sand that escaped the Wingate erg was recy-
cled northward by Moenave streams (Fig. 6).

North of Flagstaff, Arizona, volcanic
granules occur in the Dinosaur Canyon Member.
Although these grains have been neither dated
isotopically nor studied petrographically,
paleocurrent data in fluvial deposits suggest
that they were derived from volcanic rocks to
the south.
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Figure 3. Generalized Early and Mid-
dle Jurassic tectonic elements.

Northeastern extent of arc reconstruction
after Marzolf (1990, 1991). The north and
east limit of Cenozoic extension the-
oretically marks the maximum possible
northeastward extent of the arc as no known
Jurassic intrusions occur in non-extended
rocks. .

o

1 unconformities)
Sub-Kayenta Unconformity

. Nation (1990) and Clemmensen and others
(1989) document that appreciable erosion
affected the top of the Wingate Sandstone -
Moenave Formation sequence. This contact has
local relief of up to 15 m but lacks any
angular discordance (Fig. 4). Evidence sup-
porting an unconformity includes the presence
of silcrete with extensive burrows, roots,
tree trunks, and soil horizons northeast of
Flagstaff (Edwards, 1985). The unconformity
is present across most of the Colorado
plateau; its extent to the west is unknown,
and eastward it is truncated by younger
unconformities. According to F. Peterson
(pers. communication, 1993), there is no evi-
dence indicating an unconformity at this
stratigraphic position in the Uinta Mountains
of northern Utah.

The sub-Kayenta undonformity represents
a pericd of downcutting of unknown, but prob-

ably short, duration following depositig
the lower Glen Canyon Group. The lack
angularity (the Wingate-Dinosaur Canyof
isopach has a irregular, sheet-1like geomet;m
suggests a fall in base level or climatj
changes rather than significant tectonig
uplift.

0 of

Kayenta Formation (sandy facies) and Spripg.
dale Sandstone

The sandy facies of the Kayenta Forma-
tion and equivalent Springdale Sandstone Mep-
ber of the Moenave Formation (Blakey, 199p)
define a widespread sandy perennial tq
locally ephemeral stream system that floweq
west to northwest across much of the Colorade
Plateau (Luttrell, 1985; Bromley, 1981). The
large, mature, perennial streams were deriveqd
well east of the Colorado Plateau, ang
entrained sediment from older sedimentary
rocks as well &s Precambrian clasts from
small remnants of the Ancestral Rockies
(Luttrell, 1985). The upper contact of the
Kayenta Formation with the Navajo Sandstone
is gradational and intertonguing.

It is paradoxical that a mature dynamic

fluvial system would be encased between two

major eoclian deposits. Scoured erosional
features at the top of the underlying Wingate
Sandstone, together with sandstone clasts in
the Kayenta Formation likely derived from the
Wingate Sandstone, strongly suggest cementa-
tion of the older eolian deposits (M.J.
Nation, personal commun., 1992) . Coupled
with recognition of the sub-Kayenta unconfor-
mity, this suggests that Kayenta streams
flowed across bedrock and did not erode
through loose sand.

As Kayenta streams flowed westward
across the porous Wingate Sandstone and
across a semi-arid to arid region, water loss
downstream contributed to more ephemeral
structural characteristics such as smaller
and fewer cross beds and an increase in
planar (upper flow regime)-stratification.
The last remnants of the Springdale Sandstone
occur near the edge of the Colorado Plateau
at St. George, Utah (Fig. 7). Only the
southern margin of the Kayenta/Springdale
system is clearly defined. South of the
pinchout near Tuba City, Arizona, the sub--
Kayenta unconformity is marked by extensive
silcrete deposits.

The cause of the great influx of peren~
nial fluvial systems onte the Colorado
plateau during the arid Jurassic Period is
unknown but we speculate a climatic cause.
puring the break-up of Pangea, the Colorado
Platean "drifted" northward through the mon-
soonal belt several degrees north of the
equator (Late Triassic Megamonsoon of Dubiel
and others, 1991). The Plateau was under ;he
arid influence of the subtropical high during
most of Jurassic time (Parrish, 1992). Areas
to the south and east, however, may still
have been under the monsoonal belt. Perhaps
the western tilt of the Colorado Plateau (as
documented by paleostream flow) during this
time coupled with undocumented tectonic tilt-
ing southeast of the study area (rejuvenation




south of the restored transect in
in Mountains (Reynolds and others,

SYNTHESIS
Introduction and Terminology

the six Lower and Middle Jurassic sedi-
sequences and their bounding uncon-
ties provide the foundation for a tec-
For each of these sequen-
we have established: 1) a regional
2) distribution of volcanic ash and
3) general paleoenvironmental set-
nd 4) relation between preserved sedi-
and volcanic rocks and tectonic ele-
.. These factors, isotopic dates from
rocks, distribution (and reconstruction)
and petrographic and structural
4 from the arc, can be synthesized into a
rehensive analysis of the western Colo-
o Plateau and adjacent arc terrane (Figs.
51, 22)- The details gleaned from the tec-
tonic interpretation of rocks on the Colorado
Jjateau provide a basis for the extrapolation
ftectonic events -into the structurally com-
jlex and 1ess well understood arc terrane. We
: q@ve attempted to keep tectonic terminology
ts a minimum. Although a number of tectonic
lements have been named and recognized as
eing active during Jurassic time (Peterson,
ggga, 1988b; Blakey, 1988), the following
‘were most influential and are used in the
“ensuing synthesis, and are shown on Figure 3.
: 1) The Utah-Idaho trough was a
Jstrongly topographically negative area in
‘which subsidence rates either matched or
exceeded sedimentation rates. The trough
‘provided the pathway for several marine

a
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transgressions into dominantly continental
sequences, and during continental episodes of
cedimentation it was a locus of north-
directed stream deposition.

2) The Mogollon slope (Bilodeau, 1986)
was apparently a gently inclined buttress
along the southern margin of the Colorado
plateau. At times a gentle slope confined
northwesterly flowing streams that entered
the Colorado Plateau from the south. More
rarely, the slope was steeper, and vigorous
streams that drained mountainous terrain to
the south or southeast flowed across it.
puring times in which an extensional arc ter-
rain is envisioned, we speculate that Mogol-
lon slope was a topographic rift shoulder or
a low arch between the arc graben-depression
and the back arc or Colorado Plateau region.
Before establishment of the extensional/
transtensional regime, the southward termina-
tion of the Mogollon slope may have been pri-
mary volcanic highlands. The slope was not a
hindrance to ergs that periodically migrated
southward into the arc (Bilodeau, 19886).

3) The Monument bench subsided at a
slower rate than areas to the south and west.
Throughout lower Middle Jurassic time,
younger deposits onlapped the gentle west-
dipping plain (manifested as the J-2 erosion
surface) and eventually buried it in early
Callovian time (Fig. 20).

4) The Echo trough (King and Blakey,
1691) was a rapidly subsiding feature in Mid-
dle Jurassic time. Present-day erosion trun-
cates the Page Sandstone and upper member of
the Carmel Formation, but isopach studies
show a continuing thickening of these forma-

E
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hole Mountains to Fort Defiance, Arizona.

cussed in text.

west of the Colorado Plateau partly after Marzolf . '
172 ma rocks in Cowhole Mountains to rocks on Colorado Plateau follows our suggestions dis-
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SOUTHWEST UTRH, SOUTHERN

Robert

ABSTRACT

Late Cretaceous sedimentary rocks in
5 Utah, southern Nevada, and
northwest Arizona were deposited in a
; in the proximal reaches
lof the southern sector of the Sevier foreland
‘pasin. These strata record deformation in
aﬁmhe gevier fold and thrust belt to the west,
#.ond provide insight into the evolution of
his part of the foreland basin.

& Sedimentologic and compositional data
~jndicate that basal conglomerate throughout
“the study area was deposited on a regional
~pediment surface of Jurassic rock by east-
. flowing, bedload-dominated, braided fluvial
Abundant quartzite clasts suggest a
provenance in the Wheeler-—-Gass Peak thrust
system in the south, and the Wah Wah thrust
in the north. In the northern part of the
study areay, at Three Peaks, Utah, north-
flowing, mudflow—dominated fan deposits that
interfinger with east—-directed, quartzose
fluvial deposits are interpreted to reflect
) incipient movement on the Iron Springs
-1 ' thrust.

Cclaystone, pentonitic tuff, fine-

grained sandstone, and carbonate that overlie

] the basal conglomerate indicate a change to

| low-enexdgy fluvial and paludal environments.

The preservation of these deposits in a

proximal foreland setting suggests continued
subsidence and sediment starvation.

‘ The last phase of Cretaceous basin
evolution is marked by the eastward
advancement of the thrust belt, and a change
in regional drainage patterns. The change in

| drainage from an earlier east-flowind,
transverse system to & north—northeast
flowing system, parallel to the orogenic
front, 1is attributed to increased subsidence

l caused by thrust loading. Compositional data
from sandstone and conglomerate indicate
erosion of Paleozoic carbonate rocks
suggesting that eastward thrust migration was

I manifested by development of the summit-
Willow Tank and Muddy Mountain thrusts in the
south, and the Blue Mountain and Escalante
thrusts in the north.

\ INTRODUCTION

Late Cretaceous strata in southwest

Utah, southern Mevada, and northwest Arizona

| were deposited in the proximal reaches of an
| extensive foreland basin that reached from
northern Canada to southern Nevada (Fig. 1).

These continental strata were deposited in

i In Dunn, G., and McDougall, K., eds., 1993,
! Mesozoic Paleogeography of the Western United States-II
Pacific Section SEPM, Book 71, p. 417-432.

LATE CRETACOUS PALEOGEOGRAPHY OF THE SOUTHERN SEVIER FORELAND,

NEVADA, AND NORTHWEST ARIZONA

p, Fillmore

pepartment of Geology
University of Kansas
Lawrence, Kansas

the southernmost sector of the foreland,
adjacent to the east-vergent Sevier fold and
thrust belt that lay to the west and were a

source for clastic material (Armstrong,
1968) . Thus, these gsediments provide a
record of Late Cretaceous contractional

deformation and associated pasin evolution.

previous studies of proximal Sevier
foreland deposits have concentrated on strata

to the north (e.g. Wiltschko and DOXI, 1983;
Lawton, 1983, 1985, 1986; Dickinson and
others, 1986; DeCelles, 1988). The southern
sector, however, remained largely unstudied
except for regional stratigraphic and
structural studies (e.9. Bissell, 1952;
Bohannon, 1983).

strata in the study area include the
pakota and Iron Springs Formations, southwest
utah (Mackin, 1947; Fillmore and Middleton,
1989; Fillmore, 1991), the Tank
Formation and Baseline Sandstone in the Muddy
Mountains of southern Nevada (Longwell, 1949;
Fleck, 1970; Bohannon, 1983), and the Jacobs
Ranch and Cottonwood Wwash Formations of
northwest Arizona (Moore, 1972) (Fig. 2).
Correlatiens between these formations are
dominantly based on stratigraphic position
and lithologic character, in addition to
radiometric and biostratigraphic data.

In this paper stratigraphic and
sedimentologic data, including sediment
dispersal patterns, and provenance of clastic
facies, are used to reconstruct the regional
paleogeography of the southern sector of the
foreland. This paper puilds on previous work
on the Dakota and Iron Springs Formations
(Fillmore and Middleton, 1989; Fillmore,
1991) with new data on cretaceous strata in
Nevada and Arizona to provide an expanded
view of the regional paleogeography.

STRATIGRAPHY

Southwest Utah - Dakota conglomerate and Iron
Springs Formation

in southwest Utah
includes the Beaver Dam Mountains to the
south, near the town of Gunlock, and the
Three Peaks area (Fig. 2). Throughout this
area upper Cretaceous strata rest
unconformably on various members of the
Jurassic Carmel Formation with up to 60 m of
erosional relief (Hintze, 19867 Fig. 3). At
Gunlock, conglomerate of the basal Dakota
Formation ranges from 0 to 15 m in thickness
and 1is separated from the overlying Iron
springs Formation by 2a 7-m-thick bentonitic

The study area

P
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Figure 1. Map of western North America
showing the study area and the extent of the
Cretaceous Sevier orogenic Dbelt and
associated foreland basin.

tuff bed (Hintze, 1986). The sandstone-
dominated Iron Springs Formation ranges to
~1000 m in thickness and grades upwards into,
and intertongues with, the upper
Cretaceous(?)-Paleocene(?) Grapevine Wash
Formation (Wiley, 1963; Goldstrand, 1992),
which is overlain by the Lower Tertiary
Claron Formation.

At Three Peaks no Dakota Formation is
recognized; the Iron Springs Formation is up
to 830 m thick and consists of sandstone,
siltstone, and conglomerate (Fillmore, 1991).
Basal conglomeratic strata at Three Peaks,
however, are interpreted to be correlative to
the Dakota at Gunlock (Fillmore, 1991). The
Iron Springs Formation 1is unconformably
overlain by the Claron Formation (Mackin,
igg;; Mackin and Rowley, 1976; Goldstrand,

).

Although the previously assigned Late
Cretaceous age for these strata, based on
stratigraphic correlation, was correct
(Bissell, 1952; Van de Graff, 1963), recent
data have provided significantly tighter
constraints. A Cenomanian age for the
fluviatile Dakota Formation in southwest Utah
is based on correlation with fossiliferous
fluvial and marine Dakota strata to the east,
in south-central Utah (am Emde, 1991; Eaton,
1991), At Gunlock, Hintze (1986) reported an
80+/-10 Ma zircon fission track age from the
bentonitic tuff that lies between the Dakota
and Iron Springs Formations. Only the upper
range of error for this fission track age
fits the Cenomanian to Turonian age that is

indicated by palynomorphs fraom lower Iron
Springs strata at Gunlock (Hintze, 19g¢)
Vertebrate fossils from the upper part of the
formation, in the Pine Valley Mountaing
immediately east of Gunlock (Fig. 2,
indicate a Santonian age (Eaton, 1992), Né
age data from the Three Peaks area have beep
obtained.

Southern Nevada ~ Willow Tank Formation ang
Baseline Sandstone.

In the Muddy Mountains, southerp
Nevada, the Willow Tank Formation 1lieg
unconformably on an erosional surface cut
into the Jurassic Carmel Formation and Aztec
Sandstone (Longwell, 1949; Bohannon, 1983),
The Willow Tank Formation is ~80 m thick ang
consists of a basal conglomerate and g
relatively thick sequence of claystone,
siltstone, and carbonaceous shale. In the
conformably overlying Baseline Sandstone
three members are recognized (Fig. 3). The
sandstone-dominated basal white member ig
conformably overlain by the red member, which
is defined by its red color. To the north,
in the North Muddy Mountains, the red member
interfingers with the Overton Conglomerate
Member . The Overton Conglomerate, over most
of its extent, 1is conformable with the
underlying white member, but locally is
unconformable and angular (Bohannon, 1983).
The Baseline Sandstone is overlain by the
Miocene Horse Spring Formation (Bohannon,
1983) .

The age of Cretaceous strata in
southern Nevada is well-constrained, although
a minimum age has not been established,
Fleck (1970) reported K-Ar ages from tuffs in
the Willow Tank Formation of 98.4 and 96.4
Ma, on the Albian-Cenomanian boundary (97.5
Ma, from the DNAG time scale of Palmer,
1983) . Similarly, the occurrence of the fern
Tempskya suggests an Albian age (Ash and
Read, 1976). Tuffs in the lower white member
of the Baseline Sandstone have yielded K-Ar
ages of 95.8+/-3.5 and 96.9+/-3.6 Ma, and an
age of 93.1+/-3.4 Ma has been obtained from
the overlying red member (biotite
concentrates; Carpenter and Carpenter, 1987).
All age data from the Baseline Sandstone
indicate a Cenomanian age.

Northwest Arizona - Jacobs Ranch and
Cottonwood Wash Formations.

Cretaceous (?) strata in the Virgin
Mountains, northwest Arizona, include the
Jacobs Ranch Formation and the Cretaceous(?)
or Eocene(?) Cottonwood Wash Formation
(Moore, 1972). The Jacobs Ranch Formation
unconformably overlies the Navajo (Aztec)
Sandstone and is up to 90 m thick. The
formation comprises a 2- to 6-m-thick basal
conglomerate overlain by interbedded
sandstone, siltstone, and conglomerate. The
Cottonwood Wash Formation lies unconformably
on the Jacobs Ranch Formation and comprises
up to 425 m of conglomerate, tuff, and
carbonate (Moore, 1972). Locally the contact
exhibits an angular discordance of up to 15°,
and where the Cottonwood Wash Formation
truncates the Jacobs Ranch Formation, it
rests on Navajo Sandstone (Moore, 1972).
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No age data are available for these
strata, but based on stratigraphic location
and 1lithologie <character, Moore (1972)
correlated the Jacobs Ranch Formation with
the Willow Tank Formation and Baseline
Sandstone in Nevada and the Iron Springs
Formation in Utah. Moore (1972) correlated
the Cottonwood Wash Formation with the
Overton Conglomerate and the Horse Springs
Formation in Nevada, and the Claron Formation
in Utah. These correlations were made prior
to the assignment of the Overton Conglomerate
to the Baseline Sandstone and the
establishment of a Miocene age for the Horse
Spring Formation. Basal conglomerate of the
Cottonwood Wash Formation is herein
correlated with the Overton Conglomerate
Member of the Baseline Sandstone based on

stratigraphic, lithologic, and compositional
similarities (Fig. 3). It is possible that
the overlying tuff and carbonate is much
younger than the basal conglomerate, and

unrelated to foreland basin development.

METHODS

Interpretations of Late Cretaceous
paleogeography reported in this paper are
based on data obtained from detailed measured
stratigraphic sections. Lithofacies analysis
using facies associations and vertical
successions are used to interpret
depositional environments. Directional data
from cross-stratification and clast
imbrication are used to establish sediment
dispersal patterns. These are used in
conjunction with compositional data from
modal analysis of thin-sectioned sandstone
samples, and clast counts from conglomeratic
units to determine the provenance of clastic
facies.

sandstone compositional data were
obtained from point counts of 49 thin-
sectioned Iron Springs Formation samples from
the Three Peaks and Gunlock areas (Fillmore,
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development ., (B) Time 2: Ramping and erosion of the Blue Mountain thrust and influx of
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Time 4: Development of trunk system in which flow parallels the strike of the Sevier
mountain front (from Fillmore, 1991),
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RESEARCH Focus

The enigmatic rise of the Colorado Plateau

Rebecca M. Flowers

Department of Geological Sciences, University of Colorado at Boulder, Boulder, Colorado 80309, USA

How and when the Colorado Plateau attained
its current mean elevation of ~2 km has puzzled
scientists for nearly 150 yr. This problem is most
dramatically manifest when standing on the rim
of the Grand Canyon, viewing the extraordinary
1500-m-deep gorge carved into nearly horizon-
tal sedimentary rocks that were deposited dur-
ing the 500 m.y. prior to plateau uplift when
the region resided near sea level. What caused
the elevation gain of this previously stable cra-
tonic region in Cenozoic time? Did the source
of buoyancy for plateau uplift atise from the
crust, lithospheric mantle, or asthenosphere, or
through some combination of the three? Why
did this low-relief platean escape significant
upper crustal strain during uplift, in contrast to
the Cenozoic surface deformation that is so strik-
ingly apparent in the high-relief landscape of the
surrounding Rocky Mountain, Rio Grande Rift,
and Basin and Range provinces (Fig. 1)?

The answers to these contentious questions
are significant for understanding how deep-
seated processes control the elevation change
and topographic evolution of Earth’s surface.
These relationships are particularly cryptic
within continental interior settings like the
Colorado Platean. Although there is a first-order
understanding of vertical motions in areas close
to plate boundaries, there is comparatively little
consensus on the causes of such motions dis-
tal from these margins. The Colorado Plateau
exemplifies this problem. The protracted his-
tory of Cordilleran orogenesis affords numer-
ous opportunities for how and when uplift of
the Colorado Plateau might have occurred. The
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Figure 1. Topographic map of the Colorado
Plateau and adjacent provinces.
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region is last known to have been at sea level
in Late Cretaceous time, based on the wide-
spread occurrence of marine sediments of this
age. Elevation gain could have occurred in Eatly
Tertiary time associated with Sevier-Laramide
contraction, mid-Tertiary time synchronous
with the proposed demise of the Laramide flat
slab, or Late Tertiary time coeval with regional
extensional tectonism in adjacent provinces.
Hypothesized mechanisms include partial
removal of the lithospheric mantle (e.g., Spen-
cer, 1996), chemical alteration of the lithosphere
owing to volatile addition or magma extraction
(e.g., Humphreys et al., 2003; Roy et al., 2004),
warming of heterogeneous lithosphere (Roy et
al., 2009), hot upwelling within the astheno-
sphere (Parsons and McCarthy, 1995; Moucha
et al., 2009), and crustal thickening (McQuar-
rie and Chase, 2000). It is clear that there is no
shortage of mechanisms that could explain the
plateau’s origin. The core challenge is deter-
mining which mechanism, or combination of
mechanisms, is indeed the cause.

Crucial for solving this problem are con-
straints on the plateau’s elevation history, ero-
sional evolution, magmatism pattemns, and mod-
em lithospheric structure. Lin and Gurnis (2010,
p. 663 in this issue of Geology) and van Wijk et
al. (2010, p. 611 in this issue of Geology) both
present models for elevation gain of the plateau,
and use such constraints from a variety of recent
studies to better restrict and assess their models.
Liu and Gurnis focus on an explanation for the
Late Cretaceous through mid-Cenozoic uplift
history of the southwestern plateau, whereas
van Wijk et al. explore a mechanism for late
Cenozoic elevation gain and differential uplift
along the plateau edges.

In the first study, Liu and Gumis employ an
inverse mantle convection model to compute
the changing dynamic topography, the vertical
motion of Earth’s surface in response to mantle
flow. This model of dynamic uplift linked to
Farallon slab evolution predicts an initial phase
of subsidence associated with flat slab devel-
opment, followed by two phases of uplift in
Late Cretaceous and Eocene times due to pro-
gressive slab removal. Liu and Gumis invoke
mantle upwellings to induce the remainder of
the plateau’s uplift in the Oligocene. A distinc-
tive result of the model is the prediction that
the plateau was tilted to the northeast in Late
Cretaceous—Early Tertiary time, with later dif-
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ferential elevation gain of the plateau interior
that diminished or reversed this tilt. The authors
note that their results compare favorably with
the conclusions of two recent investigations on
the southwestern plateau (Flowers et al., 2008;
Huntington et al., 2010). In the second study,
van Wijk et al. examine the consequences of
late Cenozoic edge-driven convection along
the plateau margins induced by a step in litho-
spheric thickness between the plateau and the
adjacent Rio Grande Rift and Basin and Range
provinces. The lithospheric thickness contrast is
observed seismically and attributed to Cenozoic
extension of the adjoining regions. This work
finds that asthenospheric upwelling and litho-
spheric mantle removal along the plateau edges
can account for Neogene—Quaternary patterns
of magmatism, distinctive shallow mantle seis-
mic anomalies, and several hundred meters of
differential uplift along the plateau margins.

One question arising from these two studies
is: are their conclusions compatible? The pro-
posed dynamic topography model can account
for ~1.2 km of uplift in the southwestern plateau
in Late Cretaceous through Eocene time. This
portion of the history does not preclude later
uplift, although Liu and Gumis propose mid-
Tertiary mantle upwelling to account for much
of the remaining elevation gain to generate the
modern ~2 km plateau elevation. Van Wijk et
al. can explain several hundred meters of dif-
ferential plateau margin uplift by edge-dtiven
convection in the late Cenozoic. Their results
do not exclude earlier uplift. Thus, to first order,
the results of these two studies do not appear
to be mutually exclusive. When integrated,
they would predict a complex spatio-temporal
progression of uplift migrating from south-
west to northeast in Late Cretaceous through
mid-Cenozoic time, with a late Cenozoic uplift
phase and development of differential topogra-
phy along the plateau edges.

The other obvious question that emerges
from these efforts is both more important and
far more difficult to answer. Do the proposed
models accurately describe the true origin and
evolution of Colorado Plateau elevation? Both
studies are significant in advancing potentially
important and viable mechanisms to explain
key features of the plateau. They are therefore
serious contenders among the suite of compet-
ing models for plateau elevation gain. However,
determining the extent to which these models
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approximate reality must in part await additional
constraints on the uplift history with which to
further test the predictions of each study.

One reason why resolving the cause of pla-
teau uplift is such a tough problem is that
deciphering the paleoelevation of continents
is extremely difficult, and the plateau’s eleva-
tion history is critically important for isolating
the correct uplift mechanism. Dated marine
deposits can determine when an area was at sea
level, but no direct, reliable proxy yet exists for
the past altitude of an elevated region. Strate-
gies for addressing this problem commonly
involve estimating paleotemperature, constrain-
ing paleorelief, deciphering paleohydrology,
and reconstructing erosional and depositional
histories. Paleotemperature estimates for infer-
ring paleoelevation are typically made by stable
isotope and paleobotany studies. Application
of the new clumped isotope thermometer on
the Colorado Plateau (Huntington et al., 2010)
and paleobotany efforts in the Rocky Moun-
tain region (e.g., Wolfe et al., 1998) are note-
worthy examples. The past amount of relief in
a landscape imposes a minimum constraint on
paleoelevation, and resolving the carving of
the Grand Canyon is an obvious target for con-
straining Colorado Plateau paleorelief. Recent
approaches to determine the history of canyon
incision include U-Pb dating of carbonate cave
deposits (Polyak et al., 2008), “Ar/¥Ar dating
of canyon basalts (Karlstrom et al., 2008), and
(U-Th)/He thermochronometry of plateau sur-
face and canyon samples (Flowers et al., 2008).
The reorganization of plateau paleodrainage
systems in part reflects the plateau’s topographic
development; deciphering this history has been
the target of numerous stratigraphic, geochrono-
logic, and isotopic studies (e.g., Young, 1979;
Davis et al., 2008; Pederson, 2008). Strati-
graphic and thermochronologic efforts have
been used to resolve the plateau’s erosional and
depositional evolution that is linked with its his-
tory of elevation change (e.g., Dumitru et al,
1994; Cather et al., 2008). A basalt vesicularity
study differs from the investigations above in its
attempt to directly constrain paleoatmospheric
pressure, and therefore paleoelevation, from the
size of vesicles in plateau lavas (Sahagian et al.,
2002), but these results are widely debated (e.g.,
Libarkin and Chase, 2003). Not surprisingly,
contradictory interpretations regarding the uplift
history of the Colorado Plateau often arise from
the diverse information yielded by the many
studies in this region.

The two geodynamic studies in this issue of
Geology underscore the probable complexity of
the platean’s history. They especially highlight
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the unlikelihood of the entire plateau undergoing
a single spatially uniform phase of surface uplift,
and emphasize the potential for significant geo-
graphic and temporal heterogeneity in elevation
gain. Such a history would only exacerbate the
challenge of accurately reconstructing the pla-
teau’s evolution from the geological record. Per-
‘haps some of the geological data that seemingly
conflict in the context of simpler uplift models
can be reconciled when evaluated in the frame-
work of the more complex patterns of elevation
gain predicted by these geodynamic studies.
The inventive new approaches for deciphering
the plateau’s history coupled with testable pre-
dictions from geodynamic models are yielding
fresh insights into the perplexing story behind
the topographic rise of the Colorado Plateau.
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ABSTRACT

The source of buoyancy for the uplift of
cratonic plateaus is a fundamental question
in continental dynamics. The ~1.9 km uplift
of the Colorado Plateau since the Late Creta-
ceous is a prime example of this problem. We
used apatite (U-Th)/He thermochronometry
(230 analyses; 36 samples) to provide the first
single-system, regional-scale proxy for the
unroofing history of the southwestern quad-
rant of the plateau. The results confirm over-
all southwest to northeast unroofing, from
plateau margin to plateau interior. A single
phase of unroofing along the plateau margin
in Late Cretaceous to Early Tertiary (Sevier-
Laramide) time confrasts with multiphase
unroofing of the southwestern plateau inte-
rior in Early and mid- to Late Tertiary time.
The Early Cretaceous was characterized by
northeastward tilting and regional erosion,
followed by aggradation of 21500 m of Upper
Cretaceous sediments along the eroded pla-
teau margin. Sevier-Laramide denudation
affected the entire southwestern plateau,
was concentrated along the plateau margin,
and migrated from northwest to southeast.
Following a period of relative stability of
the landscape from ca.50-30 Ma, signifi-
cant unroofing of the southwestern plateau
interior occurred between ca. 28 and 16 Ma.
Additional denudation north of the Grand
Canyon took place in latest Tertiary time.

Mid-Tertiary dates from the Grand Canyon
basement at the bottom of the Upper Granite
Gorge limit significant incision of the modern
Grand Canyon below the Kaibab surface to

tE-mail: Rebecca.Flowers @colorado.edu

Present address: Department of Geological Sci-
ences, University of Colorado, Boulder, Colorado
80309, USA

<23 Ma. Modeling the age distributions of
samples from the basement and Kaibab sur-
face nearby suggests that the gorge and the
plateau surface had similar Early to mid-Ter-
tiary thermal histories, despite their >1500 m
difference in vertical structural position. If
these models are correct, they indicate that
a “proto—Grand Canyon” of kilometer-scale
depth had incised post-Paleozoic strata by
the Early Eocene. Evidence for kilometer-
scale mid-Tertiary relief in northeast-flowing
drainages along the plateau margin, as well
as the mid-Tertiary episode of plateau inte-
rior unroofing, imply that the southwestern
plateau interior had attained substantial
elevation by at least 25-20 Ma, if not much
earlier. These observations are inconsistent
with any model calling for exclusively Late
Tertiary uplift of the southwestern plateau.

Sevier-Laramide plateau surface uplifi
and incision thus result from one or more
processes that enhanced the buoyancy of
the plateau lithosphere, expanding the
Cordillera’s orogenic highlands into its low-
standing cratonic foreland. The onset of the
Laramide slab’s demise at ca.40 Ma and
the major pulse of extension in-the Basin
and Range from ca.16-10 Ma appear to
have had little influence on the denudation
history of the southwestern plateau. In con-
trast, the post-Laramide unroofing episodes
may be explained by drainage adjustments
induced by rift-related lowering of regions
adjacent to the plateau, without the need to
otherwise modify the plateau lithosphere.
Qur data do not preclude a large component
of post-Early Eocene elevation gain (or the
geodynamic mechanisms it may imply), but
they do point toward Laramide-age buoy-
ancy sources as the initial cause of significant
surface uplift, ending more than 500 m.y. of
residence near sea level.

Keywords: Colorado Plateau, (U-Th)/He,
Grand Canyon, unroofing, incision, uplift, ther-
mochronometry.

INTRODUCTION

Like most of the North American craton, the
Colorado Plateau remained near sea level for
500 m.y. during slow subsidence and deposi-
tion of Paleozoic and Mesozoic sediments
(Hunt, 1956). However, unlike most of the
craton, the plateau was uplifted to its current
elevation of ~1.9 km with little internal upper
crustal strain (<1%), requiring the acquisition
of significant lithospheric buoyancy, sometime
after widespread deposition of Upper Creta-
ceous marine sediments.

Models of how this buoyancy was acquired
are numerous (e.g., McGetchin et al., 1980;
Morgan and Swanberg, 1985), and can be
broadly subdivided into three groups on the
basis of the predicted timing of uplift. Late
Cretaceous to Early Tertiary uplift mechanisms
related to Sevier-Laramide contractional defor-
mation (80-40 Ma) include crustal thickening
due to channel flow (¢.g., McQuarrie and Chase,
2000), convective removal of lithospheric man-
tle (England and Houseman, 1988), or chemical
modification of the lithosphere by volatile addi-
tion from the Laramide flat slab (Humphreys
et al., 2003). Mid-Tertiary buoyancy addition
(4020 Ma), perhaps driven by the demise of
the Laramide flat slab, could be due to partial
removal of the plateau lithosphere and replace-
ment with hot asthenosphere (Spencer, 1996), or
post-Laramide chemical modification through
melt extraction along the plateau margins (Roy
et al., 2004). Late Tertiary uplift models (post—
20 Ma) associated with regional extensional
tectonism involve heating the lithosphere from
below (Thompson and Zoback, 1979) possibly
aided by amantle plume (Parsons and McCarthy,

GSA Bulletin; May/Tune 2008; v. 120; no. 5/6; p. 571-587; doi: 10.1130/B26231.1; 10 figures; 1 table; Data Repository Item 2008027.
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Figure 1. (A) Map from Hunt (1956) showing geomorphic outline of the Colorado Plateau and structure contours on top of the Permian Kai-
A stratigraphic section for the southwestern

bab limestone and equivalents. Contour interval is 1000 ft. Location of map in Figure 2 is shown.
plateau is included for reference. (B) Cross section through Colorado Plateau. Section line is A—A’ in (A). Section line A-A” marks the location
of the cross-sectional reconstructions in Figure 8. Features such as the Lower Granite Gorge are projected onto the cross-section line to more

effectively depict the development and evolution of these features in our models.
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Figure 2. (A) Map showing selected tectonic elements of the southwestern Colorado Plateau.
«p” indicates position of the southward pinchout of Mesozoic strata below sub-Oligocene

unconformity in Virgin Mountains described

reversal of drainage along the Mogollon Rim at
40-20 Ma induced by mid-Tertiary extension in
central Arizona (e.g., Elston and Young, 1991),
the abrupt truncation of the western plateau edge
by extension from 16 to 11 Ma (e.g., Brady et
al., 2000; Faulds et al., 2001), the appearance of
the first Colorado River sediments in the Grand
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in text. (B) Sample types, names, and locations.

Wash trough after deposition of the Hualapai
limestone near 6 Ma Hualapai limestone {(e.g.,
Spencer et al., 2001), and the timing of incision
of a Grand Canyon with kilometer-scale relief
(e.g., Young, 1979; Lucchitta, 1979). A proposed
marine origin for the upper Miocene Hualapai
Limestone immediately west of the Grand Wash

Cliffs and the Bouse Formation (preserved well
downstream) along the lower reaches of the Col-
orado (Blair, 1978) suggested 800 m (the mod-
ern elevation of the youngest Hualapai Lime-
stone) of plateau uplift since 6 Ma (Lucchitta,
1979). However, geochemical and physical evi-
dence for a lacustrine origin of the Hualapai and
Bouse makes this interpretation questionable
(Spencer and Patchett, 1997; House et al., 2005).
The only direct paleoaltimetry estimate for the
southwestern portion of the plateau is based on
the size distribution of vesicles in young basalts
that suggests a general acceleration of uplift
through the Tertiary (Sahagian et al., 2002), but
this interpretation is also controversial (Libarkin
and Chase, 2003; Sahagian et al., 2003). Thus,
despite decades of debate, the timing of uplift of
the southwestern Colorado Plateau is still only
bracketed between ca. 80 Ma and the present,
with little consensus on the details.

Timing Constraints on Incision

The timing and mechanisms of incision of
the Grand Canyon, and the paleohydrology of
the Colorado River, are highly controversial.
From studies of the sedimentary record in the
Grand Wash Trough where the Colorado River
currently exits the western margin of the Colo-
rado Plateau, it appears clear that the Colorado
River did not become integrated into its modern
course until after the 5.97 + 0.07 Ma deposition
of the Hualapai limestone (Longwell, 1946;
Lucchitta, 1979, 1989; Faulds et al., 2001;
Spencer et al., 2001). However, the course of
the river from 16 to 5 Ma is problematic, result-
ing in a remarkable diversity of proposals for the
pre-Pliocene paleohydrology of the southwest-
em plateau. A major topic of debate is whether
lake spillover led to top-down river integration
(e.g., Spencer and Pearthree, 2001; House et
al., 2005) or headward erosion led to capture of
an ancestral northward flowing Colorado River
(e.g., Lucchitta 1979; Lucchitta et al., 2001).
Another important uncertainty involves the role
of pre-Pliocene paleocanyons in controlling the
subsequent course of the river. The presence of
the deeply incised Peach Springs and Salt River
paleocanyons along the plateau margin, men-
tioned above, has led some workers to propose
an extensive ancestral northeastward-flowing
drainage system that may have included portions
of the Grand Canyon (e.g., Potochnik, 2001;
Young 2001, 2008). Quaternary Grand Canyon
incision rates appear insufficient to carve the
entire canyon in 6 m.y., indicating either that
incision rates have decreased or that the modern
river exploited paleocanyons that were present
prior to river integration (e.g., Pederson et al.
2002; Karlstrom et al., 2007).
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Figure 7. Apatite (U-Th)/He date versus distance from the plateau rim margin for cross
sections through (A) northwestern study area, A-A’, and (B) southeastern study area, B-
B’. Locations of cross-section lines indicated in (C) Diamonds represent data for Triassic
Moenkopi sandstones, and squares represent data for Permian Esplanade and Coconino
sandstones. For type A samples, the sample mean and standard deviation is plotted. For
all samples, the youngest date is plotted (see text for additional explanation). The location
and timing constraints for deposition of the Rim gravels and Bidahochi Formation are also
shown. (C) Map showing the time at which the Kaibab surface is inferred to have cooled
below 45 °C. Time periods not shown are intervals during which the landscape was rela-
tively stable. Dashed lines indicate regions less constrained by data.

interior, confirming an overall pattern of south-
west to northeast denudation. Second, models
that reproduce the distributions of sample dates
indicate a single dominant phase of Laramide
unroofing along the plateau margin, in contrast
to multiphase unroofing that denuded the south-
western plateau interior. Third, regional data
patterns suggest significant differences in the
migration of unroofing between Sevier-Laramide
time and mid- to Late Tertiary time. Apatites
from Lower Granite Gorge basement proximal
to the plateau rim are older (Late Cretaceous)
than those from Upper Granite Gorge basement
samples from the southwestern plateau interior
(mid-Tertiary), and the youngest apatite dates
from the Triassic and Permian sandstones sys-
tematically young from the margin (Early Ter-
tiary) to the interior (mid-Late Tertiary) (Fig. 7).
The youngest apatite dates for the detrital sand-
stones are significant, because they have the low-
est effective closure temperatures, and therefore
yield dates that are most sensitive to the final
removal of Mesozoic to Tertiary overburden.
Although it is impossible to know whether we
obtained the youngest date in each sample, the
coherent regional pattern strongly supports the
interpretation of southwest to northeast removal
of overburden (Fig. 7). Toward the northwest,
in northwestern Arizona (Figs. 3B and 7A), the
datarecord (1) Sevier-Lararnide unroofing along
the plateau margin, with denudation to the Kai-
bab surface by the time of deposition of the Rim
gravels at ca. 50 Ma, (2) mid-Tertiary unroofing
(28-18 Ma) recorded both on the Kaibab sur-
face and in the basement of the Grand Canyon,
indicating this was a significant denudational
phase, and (3) Late Tertiary unroofing (<16 Ma)
north of the Grand Canyon. Toward the south-
east, in east-central Arizona (Figs. 3B and 7B),
the data indicate (1) Sevier-Laramide unroofing
along the plateau margin, with denudation to
the Kaibab surface by the time of deposition of
the Rim gravels at 35 Ma, and (2) mid-Tertiary
unroofing (28-18 Ma) to the Kaibab surface
prior to the onset of deposition of the Bidahochi
Formation at 16 Ma.

The temperature-time paths that best explain
our data set imply that the entire Kaibab surface
exposed in the study area cooled below 65-
70 °C in Early Tertiary time. We constructed a
map showing the inferred time at which the Kai-
bab surface cooled below 45 °C (Fig. 7C). We
interpret a diachronous single phase of unroof-
ing along the plateau margin, as implied by the
uniform dates within individual samples that are
younger southeastward along the plateau margin
(Figs. 5 and 7). The northeastward advance of
the second phase of unroofing within the south-
western plateau interior is inferred from our
modeled distributions of sample dates (Figs. 6
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the cause of this migration, we note that the
Sevier orogeny affected the western margin of
the plateau well before the onset of the Laramide
tectonism that affected the eastern margin, and
therefore it seems likely that the diachronism in
unroofing is in some way related to the diachro-
nism in mountain building on either side of the
plateau (Sevier versus Laramide). Denudation
was followed by northeastward transport and
aggradation of Rim gravels starting in the early
Eocene in northwest Arizona, and starting in the
late Eocene in east-central Arizona (Potochnik
and Faulds, 1998). Assuming that the apatite
(U-Th)/He apatite dates for the Music Moun-
tain Formation reflect unroofing of their source
regions, the youngest clast dates of ca. 50 Ma
provide a maximum age for deposition, con-
sistent with (1) apatite (U-Th)/He apatite dates
from the underlying Moenkopi Formation as
young as ca. 53 Ma, (2) a 64 Ma K-Ar date for
the youngest dated volcanic clast at the base
of the Long Point section (Elston et al., 1989),
(3) the occurrence of upper Paleocene or lower
Eocene freshwater gastropods in the Long Point
section (Young, 2001), and (4) the identification
of Eocene charophytes in the section (Young,
2006, personal commun.). Collectively, these
data indicate that the plateau margin was topo-
graphically higher than the southwestern plateau
interior, and had developed a net structural relief
of at least 5500 m on the basal Cambrian uncon-
formity by Early Tertiary time. According to our
model, ca. 2300 m of this relief had developed
by ca. 94 Ma (Late Cenomanian) (Fig. 8A), and
an additional 3200 m developed at some time
between ca. 80 and 50 Ma (Fig. 8B). Although
we cannot constrain absolute elevations, evi-
dence for kilometer-scale relief at the head of
the Milkweed and Peach Springs paleocanyons
and within the Upper Granite Gorge area imply
that kilometer-scale uplift had affected both the
plateau margin and at least a portion of the pla-
teau interior by 50 Ma. If such a paleocanyon
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existed, then the Milkweed and Peach Springs
drainages would presumably have been tributary
to a northeast-flowing ancestral Colorado River.

We emphasize that our constraints on uplift
and canyon incision are derived from samples
from the Upper Granite Gorge in the eastern
Grand Canyon, and need not apply to the west-
ern Grand Canyon or east central Arizona. In
the westernmost segment of the Grand Canyon
just downstream from the intersection of Peach
Springs Wash and the Colorado, early Miocene
basalts (19 Ma) appear to have flowed across
a deeply incised southern tributary (Spencer
Canyon), strongly suggesting this reach of the
canyon was carved from a Miocene surface
of low relief. An Early to mid-Tertiary proto—
Grand Canyon may have extended from Peach
Springs Canyon to the Upper Granite Gorge,
but need not have had the precise form, course,
or dimensions of the modern canyon. Rather an
ancestral canyon may have been modified and
subsequently exploited during the integration
of the modern river post—6 Ma (e.g., Potoch-
nik, 2001; Young, 2001), perhaps accounting
for the inadequacy of Quaternary incision rates
to carve the entire canyon in 6 m.y. (Pederson
et al., 2002; Karlstrom et al., 2007).

Drainage Reversal and Unroofing in
Mid-Tertiary Time

The southwestern plateau appears to have
been characterized by a relatively stable land-
scape (Figs. 8B—-8C) with either slow erosion
or aggradation from ca.50-30Ma. In the
mid-Tertiary (28-16 Ma), a significant phase
of unroofing coincides with the initiation of
major extensional tectonism in the Basin and
Range province, which is presumably the
cause of drainage reversal across the Mogol-
lon Rim recorded in the Salt River region
(Potochnik, 2001) (Figs. 8C-8D). Relatively
little is known about this time interval on the
plateau from geological relationships, because

Precambrian

-3 Figure 9. Reconstructed sedi-
mentary thicknesses at the
selected times depicted in the
=< cross sections in Figure 9, rela-
tive to the horizontal Kaibab
limestone datum. Dashed lines
represent contacts between
- major rock packages of differ-
ent age. Vertical exaggeration

-2 is 25x.

25x vertical exaggeration

there are few preserved deposits of this age.
Toward the southeast (Fig. 7B), (U-Th)/He
dates of ca. 26-18 Ma for Moenkopi samples
record unroofing at this time, prior to the onset
of aggradation of the Bidahochi Formation at
16 Ma. Toward the northwest (Fig. 74), the
youngest (U-Th)/He dates from the Moenkopi
samples on the Kaibab surface, Coconino and
Esplanade samples from the Kaibab uplift, and
crystalline basement samples from the Grand
Canyon are 28—19 Ma. The dates in this range
are laterally persistent in a northwest-trend-
ing band ~75 km wide (Fig. 7A), suggesting a
pulse of erosion of the plateau interior at this
time. The youngest dates of ca. 23 Ma from the
Grand Canyon basement indicate that signifi-
cant incision of the Upper Granite Gorge below
the Kaibab surface could not have begun until
after this time. Our model maintains kilome-
ter-scale relief in the Upper Granite Gorge area
from 25 Ma to 16 Ma, with the bottom of the
channel cut in Lower Jurassic strata at 25 Ma
and Mississippian strata at 16 Ma (Figs. 8C-
8D). Our data do not allow us to determine
whether relief increased or decreased through
this interval in the Upper Granite Gorge area.
However, in contrast to the westernmost portion
of the canyon below Peach Springs Canyon,
the data do not support carving of the Upper
Granite Gorge into a surface of low relief cut
on or near the Kaibab Formation.

Unroofing in Late Tertiary Time

Substantial post-Laramide unroofing of the
southwestern plateau interior north of the Grand
Canyon occurred in latest Miocene to Pliocene
time, recorded by samples containing (U-Th)/He
dates <18 Ma, and as young as 5 Ma (Figs. 7A
and 8E). These youngest dates are consistent
with apatite (U-Th)/He apatite results even far-
ther north in southern Utah suggesting acceler-
ated erosion <10 Ma (Stockli, 2005). On the
basis of widespread Pliocene river gravels along
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the lower part of the Colorado River derived in
part from central Utah, there is strong consensus
that a through-going Colorado River existed at
least as far back as 5 Ma (e.g., Spencer et al.,
2001). Rapid, young denudation of the interior
portions of the southwestern plateau supports
the hypothesis that river integration induced the
latest phase of plateau unroofing by providing a
mechanism to efficiently remove large sediment
volumes from the platean interior (Pederson et
al., 2002).

Implications for the Relationship between
Unroofing, Incision, and Surface Uplift in
the Upper Granite Gorge Region

Our new results impose important constraints
on the controversial timing of uplift and inci-
sion of the southwestern Colorado Plateau,
especially in the Upper Granite Gorge region of
the plateau interior. In this section, we describe
and evaluate two endmember models for the
relationship between these processes (Fig. 10).
We note that although these endmembers echo
the views of many geologists since the time of
John Wesley Powell’s exploration of the can-
yon, neither precisely describes the views of
any particular investigator or period of investi-
gation. Concise, modern overviews of the com-
plex evolution of ideas relating to this topic may
be found in Ranney (2005) and Powell (2005).
In one endmember, regional unroofing to the
Kaibab surface occurred prior to Late Tertiary
incision of the Grand Canyon and coeval uplift
of the plateau, implying that regional unroofing
of the Mesozoic (Dutton’s Great Denudation)
is genetically unrelated to uplift and incision

Flowers et al.

of the Grand Canyon (Dutton’s Great Erosion)
(Fig. 10, model #1). In the opposite endmem-
ber, canyon incision and plateau uplift in Early
Tertiary time preceded regional unroofing, such
that regional unroofing is a direct consequence
of these processes (Fig. 10, model #2). In this
extreme, a high-relief Early Tertiary “equilib-
rium” landscape lowers itself largely unchanged
onto the present landscape, such that the carv-
ing of the modem Grand Canyon from Kaibab
down to basement was accompanied by equiva-
lent lowering of the plateaus on the canyon’s rim
from Cretaceous down to Permian.

In support of the general viability of the
low-relief denudation of model #1, we cite
the pre-mid Cretaceous erosion of ~1500 m of
Lower Triassic through Upper Jurassic units
(~0.03 mm/yr for ~56 m.y.), followed by depo-
sition of Late Cretaceous marine sediments
(Fig. 8A). Deposition on either side of the low-
relief, basal Cretaceous erosion surface occurred
at or near sea level (e.g., Blakely, 1989), and
therefore it is difficult to envisage the growth
and demise of kilometer-scale topographic
relief during this erosional event. This particu-
lar example does not specifically support either
of the models in Figure 10, which apply only to
post-mid-Cretaceous unroofing. Rather, it cau-
tions us not to presume that unroofing is a direct
proxy for surface uplift, or that erosional unroof-
ing at moderate rates requires the development
of kilometer-scale relief.

Our data indicate significant denudation of
the southwestern plateau interior during the
mid-Tertiary (28-16 Ma), most likely due to
drainage reversal across the plateau rim. The
question of whether this unroofing was associ-
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ated with elevation gain of the plateau interior is
difficult to address on the evidence for unroof-
ing alone. Along the plateau margin, substantial
topographic relief had developed by the mid-
Tertiary in the Salt River Canyon (850-1400 m)
and along the Mogollon Rim (~600 m). Because
regional drainage had reversed such that the
plateau interior was now the source region for
gravels deposited in these areas, the southwest-
ern plateau interior presumably had attained
significant elevation by this time (Peirce et al.,
1979; Potochnik, 2001). Uplift of at least a por-
tion of the plateau interior may have occurred
as early as the Early Tertiary, when the plateau
margin was topographically higher than the
plateau interior and the area had developed a
net structural relief of >5500 m. If our models
for the thermal histories of samples from the
Upper Granite Gorge region are correct, they
would imply that a significant proto—Grand
Canyon had incised post-Paleozoic strata by
the early Eocene, therefore indicating kilo-
meter-scale elevation gain of at least this part
of the plateau during Sevier-Latamide time.
These results are inconsistent with models for
the rise of the entire plateau from near sea level
during Late Tertiary time (Fig. 10, model #1),
and indicate that at least part of the uplift was
decoupled from the integration of a southwest-
flowing Colorado River in latest Miocene time.
Rather, the data suggest a scenario more similar
to model #2 (Figs. 9 and 10), in which canyon
incision and substantial plateau uplift in Early
Tertiary time preceded the mid- and Late Ter-
tiary unroofing episodes that denuded the pla-
teau interior. Clearly, however, our data do not
preclude a significant component of elevation

—_—— ] [ === sealevel
2 /"‘I\ / —T

Figure 10. Endmember mod-
els for the uplift, incision, and
unroofing history of the plateau
interior in the Upper Gran-
ite Gorge region of the Grand
Canyon.
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ABSTRACT

The Toroweap and Hurricane faults, considered to be the most active in Arizona, cross
the Uinkaret volcanic field in the western Grand Canyon. These normal faults are down-
thrown to the west, and the Colorado River crosses these faults as it flows west in the
Grand Canyon. Cosmogenic *He (*He,) dates on basalt flows and related landforms are
used to calculate vertical displacement rates for these faults. The two f: aults cross unrup-
tured alluvial fans dated as 3 ka (Toroweap) and 8 ka (Hurricane), and 10 other landforms
that range in age from 30 to 400 ka are displaced. Middle and late Quaternary displace-
ment rates of the Toroweap and Hurricane faults are 70-180 and 70-170 m/m.y., respec-
tively. On the basis of these rates, the combined displacement of 580 m on these faults
could have occurred in the past 3 to 5 m.y. All 3He, dates are younger than existing K-
Ar dates and are consistent with new %°Ar/?Ar dates and existing thermoluminescence
(TL) dates on basalt flows. These different dating techniques may be combined in an
analysis of displacement rates. Downcutting rates for the Colorado River in the eastern
Grand Canyon (400 m/m.y.) are at least double the downcutting rates west of the faults
(70-160 m/m.y.). Faulting probably increased downcutting in the eastern Grand Canyon

relative to downcutting in the western Grand Canyon during the late Quaternary.

Keywords: cosmogenic elements, Colorado River, normal faults.

INTRODUCTION

The Hurricane and Toroweap faults are the
most active faults in northwestern Arizona
(Jackson, 1990; Stenner et al., 1999). These
north-south—trending normal faults cross the
southwestward-flowing Colorado River near
river miles 179 and 191 (Fig. 1A) and are in
the structural transition zone between the
Great Basin and Colorado Plateau physio-
graphic provinces (Stenner et al., 1999). The
faults are downthrown to the west and have a
combined vertical displacement of 580 m in
Paleozoic rocks (Fig. 1B). Quaternary land-
forms in the Uinkaret volcanic field have been
displaced by Toroweap and Hurricane faults.
Dates of volcanism near the rim of the Grand
Canyon range from 1 ka (Fig. 1A) to 3.7 Ma
at Mount Trumbull (Wenrich et al., 1995), al-
though most lava flows are younger than 600
ka (Dalrymple and Hamblin, 1998). At vari-
ous times basalt flows have dammed the Col-
orado River (Hamblin, 1994).

Previous estimates of displacement rates on
the Toroweap fault are 20 m/m.y., 56.m/m.y.,
and 110 m/m.y. in the time periods from 10
Ma to 600 ka, 600 to 40 ka, and 40 to 3 ka,
respectively (Jackson, 1990). Holmes et al.
(1978) reported displacement estimates of 60

*B-mail: crfenton@mines.utah.edu.
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to 75 m/m.y. for the interval 300 to 200 ka.
Jackson inferred that either the rate of dis-
placement increased significantly during the
Quaternary or that faulting began more re-
cently than previously thought. Previous esti-
mates for the di~splacement rate on the Hurri-
cane fault from 200 to 90 in the vicinity of
Grand Canyon range from 30-70 m/m.y.
(Pearthree et al., 1983) to 125-250 m/m.y.
(Holmes et al., 1978).

In this paper we report new displacement
rates based on 3He, ages for surfaces younger
than 400 ka crossed by the Toroweap and Hur-
ricane faults. We linearly extrapolate these
rates to estimate that the combined total ver-
tical displacement on both faults could have
occurred in the past 3 to 5 m.y. We suggest
that these displacement rates probably differ-
entially affected downcutting rates of the Col-
orado River in the eastern versus western
Grand Canyon.

AGE DATING OF BASALT FLOWS
AND ASSOCIATED LANDFORMS

The age of volcanism in the Uinkaret vol-
canic field has been previously estimated using
K-Ar (Dalrymple and Hamblin, 1998) and ther-
moluminescence (TL) dating (Holmes et al,
1978). K-Ar dating in this volcanic field is
known to be problematic owing to excess “%Ar

contact Copyright Permissions, GSA, or editing @ geosociety.org.

incorporated into large phenocrysts from the
magmatic environment (Damon et al., 1967)
and abundant glassy groundmass (Dalrymple
and Hamblin, 1998). 3°Ar/“CAr dating is more
precise than K-Ar analysis and has been used
to accurately date young basalt flows (Laughlin
et al., 1994). However, hydration and alteration
of abundant glassy groundmass in Uinkaret ba-
salts can contribute atmospheric Ar to analyses
and can cause large uncertainties in 3°Ar/*0Ar
ages. In the Uinkaret volcanic field, 3He, dating
provides an altemnative to K-Ar dating and, in
certain cases to 3%Ar/*CAr dating, particularly
for relatively young (<200 ka) basalt flows
with abundant olivine and/or pyroxene pheno-
crysts (Fenton et al., 2001). Samples collected
from the Uinkaret volcanic field were analyzed
in accordance with techniques described in
Cerling et al. (1999).

Most of the 3He. ages on surfaces in the
Uinkaret volcanic field differ significantly
from existing K-Ar ages (Table 1; for details
see Table DR1!). Damon et al. (1967) reported
a K-Ar age of 10 ka for Vulcan’s Throne (Fig.
1A), noting that it is only an order of mag-
nitude estimate because of a high atmospheric
Ar correction. We believe our *He, age of 73
+ 4 Xa is fairly accurate, although itis a min-
imum age because Vulcan's Throne, a cinder
cone, is more erodible than nearby basalt
flows. Damon (quoted in Hamblin, 1994) re-
ported a K-Ar age of 993 * 97 ka for Ham-
blin’s (1994) Whitmore Dam basalt, but Dal-
rymple and Hamblin (1998) concluded that
this date may not be reliable, on the basis of
stratigraphic relations.

Fenton et al. (2001) concluded that their
Whitmore Cascade basalt is correlative with
the Whitmore Dam basalt (Fig. 1A) and re-
ported a 3He, age of 177 * 9 ka for the flow.
This age is bracketed by TL dates of the same
flow (Table 1, Holmes et al., 1978). The Whit-
more Cascade contains abundant glass that
may contribute to an anomalously old K-Ar

IGSA Data Repository item 2001119, *He, ex-
posure ages of landforms in the Uinkaret volcanic
field, is available on request from Documents
Secretary, GSA, P.O. Box 9140, Boulder, CO
80301-9140, editing @ geosociety.org, or at www.
geosociety.org/pubs/ft2001.htm.
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Figure 1. A: Map of Quaternary basalt flows in Uinkaret volcanic field and Hurricane and Toroweap faults, western Grand Canyon, Arizona
(adapted from Wenrich et al., 1997). Details of analyses in Table DR1 (see text footnote 1). Hurricane and Toroweap faults do not displace
Hell’s Hollow and Prospect Canyon debris flows, respectively. Little Springs basalt flow (Billingsley, 1997) is not crossed by either fault, but
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1994). B: East-west cross section of western Grand Canyon from Grand Wash fault to Toroweap fault (adapted from Jackson, 1990).

age. 3He, ages of the Whitmore Cascade and
Bar Ten basalt flows are consistent with mid-
dle to late Quaternary age 3°A1/*9Ar and TL
age estimates of these flows (Table 1). Large
analytical uncertainties render the 39Ar/40Ar
ages essentially useless in calculating late
Quaternary slip rates.

Three basalt flows with the oldest 3He, ages
are found along the Toroweap fault. A lava
flow adjacent to and north of Vulcan’s Throne
has identical TL and 3He, ages of 201 * 14
ka and 208 * 14 ka, respectively (Table 1).
The K-Ar (500 * 47 ka; Dalrymple and Ham-
blin, 1998) and *He, (395 *+ 35 ka) ages of
Hamblin’s (1994) Upper Prospect basalt flow
overlap within two standard deviations (Table
1). The 3He, age may be younger due to min-
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imal flow-surface weathering. In contrast, the
K-Ar age may be older because of the pres-
ence of excess Ar. The Graham Ranch flow in
Toroweap Valley (Fig. 1A) has reported K-Ar
and TL ages of 635 + 24 ka (Jackson, 1990)
and 284 * 48 ka (Holmes et al., 1978). We
obtained a 3He, age of 284 + 37 ka for that
flow. The 3He, age of the Graham Ranch flow
may be younger than the reported K-Ar age
because the flow is weathered, but it is likely
that the 3He, and TL ages are more accurate
than the K-Ar age.

TOROWEAP AND HURRICANE
FAULTS

An alluvial fan at the mouth of Prospect
Valley (Fig. 1A) composed of debris-flow de-

~ED

posits delineates the Holocene displacement
history on the Toroweap fault. The debris flow
covering the surface was emplaced 3.0 + 0.6
ka, and the fault does not rupture this surface
(Cerling et al., 1999). An estimated displace-
ment of 2.2 m occurred during a magnitude 7
earthquake on the Toroweap fault at 3.1 + 1.6
ka, on the basis of morphologic fault-scarp
analysis in Prospect Valley, south of the Col-
orado River (Jackson, 1990). This earthquake
must have occurred before 2.4 ka, the mini-
mum age of the surface of the fan.

Using 3He, ages of volcanic landforms
along the Toroweap fault and published dis-
placements (Jackson, 1990; Wenrich et al.,
1997), we estimate a range in displacement
rates of 70-180 m/m.y. for the past 300 k.y.

GEOLOGY, November 2001




TABLE 1. DISPLACEMENT RATES FOR THE TOROWEAP AND HURRICANE FAULTS

Fault * Site Average K-Ar or TL age Displacement Average
| 3He, age 3OAr/10Ar (ka) (m) Displacement
*+1o* age rate
(ka) (ka) {m/m.y.)
Toroweap Prospect Canyon debris fan 3.0+ 0.6 = — 0 0
Toroweap Prospect Cone 373 — — 7 180
Toroweap Vulcan's Throne 734 10 — 5 70
Toroweap Basalt flow north of Vulcan's Throne 208 + 14 — 201 = 34 14 70
Toroweap Graham Ranch basalt flow 284 + 37 635 * 24 284 * 48 36 130
Toroweap Upper Prospect basalt flow 395 + 35 500 * 47 —_— - 46 120
' Hurricane Hell's Hollow debris flow 8.5 + 0.2 — — 0 0
Hurricane Northern alluvial fan of southem piedmont 74 £ 16 — —_ 7 90
Hurricane Central alluvial fan of southern piedmont 29 x 9 — —_ 3 100
Hurricane Alluvium overlying Whitmore Dam remnant 519 — —_— 4* 80
! Hurricane Bar Ten basalt flow 88 + 6 190 =+ 3907 108 + 29 103 110
| Hurricane Whitmore Cascade basalt flow (north end) 177 £ 9 220 + 120t 203 = 24 15£3 80
150 = 2201 88 = 15
Hurricane ‘Whitmore Cascade basalt flow (south end) 177 = 9 220 + 120t 208 + 24
150 + 2207 88 + 15 12 70
i 993 + 97
Note: Rates calculated using average 3He, ages of displaced lava flows, cinder cones, and alluvial deposits in the Uinkaret volcanic field. Details of analysis in Table 2 (see
text footnote 1), —= no date. Documented K-Ar and TL (thermoluminescence) ages are listed for comparison and are referenced in the text. Displacements other than those

produced by the authors are referenced in the text. Uppermost Prospect flow is not listed in this table because the vertical displacement of this flow has not been measured.

I *Scarp profile measured by authors using laser range finder and displacement calculated using far-field slopes.
139Ar/40A1 ages analyzed at the New Mexico Geochronological Research Laboratory; Samples 97-AZ-318-WDA and 97-AZ-321-WCB were coliected from the Whitmore

Cascade and sample 97-AZ-329-BT came from the Bar Ten basalt flow. Large uncertainties likely result from alteration of glass in the groundmass.

On the Hurricane fault, alluvial fans provide
data on displacements <100 k.y. old. The
Hell’s Hollow debris flow, which is not rup-
tured, yielded a 3He, age of 8.5 * 0.2 ka,
providing a datum on the age of youngest dis-
placement (Fig. 1A). Our age agrees with
morphologic analyses of fault scarps that sug-
gest that the youngest displacement in Whit-
more Wash, which resulted in 2-3 m of offset,
occurred between 5 and 15 ka (Pearthree et
al., 1983). A suite of alluvial fans, called the
southern piedmont by Stenner et al. (1999),
lies between the Bar Ten and Whitmore Cas-
cade lava flows (Fig. 1A). Varnished basalt
boulders in the alluvium yielded average 3He,
ages of 74 = 16 and 29 * 9 ka for the north-
ern and central fans, respectively, in the pied-
mont, These surfaces are displaced 7 and 3 m
by the Hurricane fault (Stenner et al., 1999),
and the resulting displacement rates are 90 and
100 m/m.y. Alluvium overlying Hamblin’s
(1994) Whitmore Dam remnant at the mouth
of Whitmore Canyon (Fig. 1A) has a 4 m dis-
placement (Table 1), and varnished basalt
boulders yield a 3He, age of 51 * 9 ka for a
displacement rate of 80 m/m.y.

In Whitmore Canyon, the Bar Ten basalt flow,
which has an 3He, age of 88 = 6 ka, has an
average vertical displacement of 15 * 6 m
(Stenner et al., 1999; Fig. 2). The flow surface
is steep and irregular, and the displacement
varies by at least 100% in short distances along
strike. The higher displacements may reflect bur-
ied bedrock scarps over which the Bar Ten basalt

+ 37 ka, we calculate a maximum displace-
ment rate of 130 m/m.y. Huntoon (1977) men-
tioned a 46 m displacement on ‘“‘older lava
flows that fill Prospect Valley”” ~2.5 km south
of the Colorado River. On the basis of field
evidence, we conclude that Huntoon’s flow is
Hamblin’s Upper Prospect Canyon flow (Fig.
1A), which has a cosmogenic 3He age of 395
+ 35 ka; the displacement rate is 120 m/m.y.,
which agrees with a linear displacement rate
(Fig. 2). Jackson (1990) concluded that the
displacement rate on the Toroweap fault in-
creases from 56 m/m.y. to 110 m/m.y. ca. 40
ka. Our data show that the displacement rate
on the Toroweap fault has been linear over the
past 400 k.y. (Fig. 2).

for the Toroweap fault (Table 1). Two cinder
cones—Prospect Cone and Vulcan’s Throne—
are displaced 7 and 5 m, respectively (Table
1). If we use 3He, ages of 37 * 3 and 73 *
4 ka for Prospect Cone and Vulcan’s Throne
(Fig. 1A), the displacement rates are 180 and
70 m/m.y., respectively. The basalt flow dated
at 208 *+ 14 ka (He.) and located north of
Vulcan's Throne has a displacement of 13-15
m (Jackson, 1990), yielding a vertical slip rate
of 70 m/m.y.

If we use a displacement of 36 m and a K-
Ar age of 635 ka, the Graham Ranch basalt
flow has a minimum displacement rate of 56
m/m.y. (Jackson, 1990). Using the same dis-
placement and our minimum 3He, age of 284

i 50 1 I T I i T T T
. Toroweap fault 20
40 Average slip rate

~ 111 £ 9 m/m.y.

15
30

20

Displacement (m)

Hurricane fault -
Average slip rate
81+ 6 m/m.y.

|l 1 1

400 0 50 100 150
3He exposure age (ka)

Ocinder cone @ basalt flow
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200

300

3
He exposure age (ka)
® debris flow

0 100 200

O alluvial fan

Figure. 2. Vertical displacement rates of (A) Toroweap and (B) Hurricane faults based on
3He, ages of displaced landforms in Uinkaret volcanic field. Average slip rates on faults,
111 = 9 m/m.y. for Toroweap and 81 = 6 m/m.y., for Hurricane, are based on linear re-
gressions (A2 = 0.966 and 0.970 for Toroweap and Hurricane faults). Gray square in B is
maximum average displacement on Bar Ten flow. It is not included in average slip rate
of Hurricane fault (see text for details).

GEOLOGY, November 2001

# (59

flowed. Excluding the highest two or three
scarps results in estimated displacements of 12
+ 4 and 10 = 3 m for the Bar Ten flow; given
the agreement in linear displacement of nearby
alluvial fans and in the Whitmore Cascade (Fig.
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2), we believe the lesser of the displacement val-
ues of 10 m on the Bar Ten flow is more rea-
sonable. If this figure is used, the displacement
rate is 110 m/m.y.

The Whitmore Cascade has an average total
displacement of 15 * 3 m at the north end of
the basalt flow (Stenner et al., 1999) and a
displacement of 12 m near the Colorado River
(Wenrich et al., 1997). Given an average 3He,
age of 177 % 9 ka, the displacement rate for
this basalt flow is between 70 and 80 m/m.y.
Using these age and displacement data, we es-
timate a late Quaternary displacement rate for
the Hurricane fault of between 70 and 170 m/
m.y., but it is likely that the displacement rate
is between 80 and 110 m/m.y. (Fig. 2). We
conclude that the displacement rates for the
Toroweap and Hurricane faults have been lin-
ear for the past 400 k.y. and 200 k.y., respec-
tively, and we find no evidence to support
Jackson’s (1990) conclusion that displacement
rates have increased in the past 40 k.y.

The Toroweap fault has 150-265 m of total
vertical displacement along its length (Jack-
son, 1990); displacement in the vicinity of the
Grand Canyon is 180 m (Wenrich et al,
1997). The total vertical displacement on the
Hurricane fault is 400 m at the Colorado River
(Wenrich et al., 1997), but published maps
show the fault concealed by a 600 ka lava
flow (Hamblin, 1994). Our field inspection in-
dicates that the Hurricane fault lies east of the
path mapped by Wenrich et al. (1997) and that
the fault does not directly interact with the
lava flow on the south side of the Colorado
River. Instead, there is substantial Quaternary
displacement in an alluvial fan just south of
the river in 192 Mile Canyon. The displace-
ment south of the river indicates that the Hur-
ricane fault crosses the Colorado River with
possibly the same activity it shows north of
the river (Fig. 2B).

The Hurricane and Toroweap faults have a
combined vertical displacement of 580 m.
This is 68% of the depth of the Inner Gorge
from Toroweap Overlook to Lava Falls Rapid
(850 m) just upstream of the Toroweap fault.
By extrapolation of the displacement rates
(Fig. 2) on both faults through the Quaternary,
we calculate that the Toroweap and Hurricane
faults could have accommodated all of their
vertical displacement in the past 1.5 and 5
m.y., respectively. Billingsley and Workman
(2000) reported that all of the faults on the
Uinkaret plateau probably became active at
3.5 to 2 Ma and that extension on the Hurri-
cane fault began after emplacement of the
Bundyville basalt (3.6 = 0.18 Ma). Thus, the
fault may have decelerated from approximate-
ly 115 m/m.y. to 80 m/m.y. between 3.5 Ma
and 180 ka. The combined Quaternary vertical
displacement on both faults is 380 m (45% the
depth of the Inner Gorge), suggesting that
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65% of the combined displacement on the To-
roweap and Hurricane faults may have oc-
curred in the past 2 m.y.

IMPLICATIONS FOR QUATERNARY
DOWNCUTTING OF THE COLORADO
RIVER

Displacements on the Toroweap and Hur-
ricane faults probably induced differential
downcutting rates of the Colorado River in the
Grand Canyon east versus west of the faults.
Vertical displacements on these faults result in
local base-level fall, as evidenced by the west
sides of these faults being downdropped rel-
ative to the eastern Grand Canyon. A river
responding to base-level fall will incise up-
stream to reduce the gradient to its previous
level and it can maintain a steady longitudinal
profile as long as stream power of the river is
large enough to allow downcutting to occur at
a rate equal to that of the uplift (Merritts et
al., 1994). The Colorado River has sufficient
power to quickly downcut through material
(Lucchitta et al., 2000) that is uplifted during
individual fault movements of 3 m or less, and
we would expect no discrete knickpoints in
the channel profile related to faulting. Thus,
the effects of this downcutting would be ex-
pressed in increased downcutting rates on the
Colorado River and its tributaries in the east-
ern Grand Canyon, and perhaps an overall in-
crease in the steepness of hillslopes in that
part of the Grand Canyon.

Quaternary displacement on the Hurricane
and Toroweap faults can help account for var-
iations in downcutting rates reported for var-
ious locations in the Grand Canyon. Lucchitta
et al. (2000) estimated downcutting rates of
70-160 m/m.y. and 400 m/m.y. for the Grand
Canyon west and east, respectively, of these
faults for the past 500-600 ka. Therefore, the
fluvial incision rate in the eastern Grand Can-
yon is at least double that west of the faults,
and displacement across the Toroweap and
Hurricane faults is probably responsible for
this difference. These faults likely played a
major role in the development of the eastern
Grand Canyon. Obviously, variations in li-
thology through the Grand Canyon influence
the morphology of the canyon, but we propose
that much of the development of the narrow,
steep-sided Inner Gorge of the Grand Canyon
just upstream of the Toroweap fault has been
driven by displacement on these faults.
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ABSTRACT

The Hurricane Fault is one of the longest and most active late Cenozoic normal
faults in southwestern Utah and northwestern Arizona. This fault shows evidence of
tectonic activity during the late Tertiary and Quaternary, neotectonism involving the
Hurricane Fault as well as the Toroweap Fault imply encroaching Basin and Range
extension onto the Colorado Plateau. Paleoseismology investigations suggest that the
Hurricane Fault poses a seismic hazard to the southwestern Utah area. During the trip,
we will examine evidence of late Pleistocene and earliest Holocene(?) surface-rupturing
faulting along the Shivwits and Whitmore Canyon sections of the fault, The Hurricane
Fault separates the Uinkaret and Shivwits plateaus and displacement along the fault
producéd the spectacular Hurricane Escarpment. We will see late Quaternary land-
forms related to back-wasting and mass movement along the Hurricane Escarpment
and look at evidence of the style and age estimates of late Pleistocene fan deposition.

Keywords: Hurricane Fault, paleoseismology, neotectonism, alluvial fan, colluvium.

INTRODUCTION

The Hurricane Fault (Fig. 1) is the longest and most active of
the late Cenozoic down-to-the-west normal faults in southwest-
ern Utah and northwestern Arizona. The Hurricane Fault crosses
the Arizona Strip between the Utah border and Grand Canyon in
close proximity to St. George, Utah (Fig. 1). Although the Ari-
zona portion of the Hurricane Fault crosses sparsely populated
terrain, much of populous southwestern Utah lies within 75 km
of the Shivwits section. Two significant, historic seismic events
have occurred in the region. An ~M6 earthquake occurred in the
Pine Valley, Utah, area in 1902 (Williams and Tapper, 1953). A
MS5.8 earthquake in the St. George area in 1992 caused minor
structural damage in southwestern Utah, triggered a large land-
slide near the entrance to Zion National Park 45 km from the epi-

center (Christensen, 1995), and caused numerous rockfalls along
the Hurricane cliffs (G.H. Billingsley, 2000, personal commun.).

Several recent paleoseismic investigations have addressed
the potential for larger earthquakes than those of the historic
record. These workers have suggested that the threshold mag-
nitude for surface rupture along faults within the Intermountain
Seismic Belt (ISB; Fig. 1) in Utah is 6 <M < 6.5 (Arabasz et al.,
1992; Doser, 1985; Smith and Arabasz, 1991). Fault scarps and
other evidence of Quaternary faulting suggest that there is poten-
tial for M > 7 earthquakes along the Hurricane Fault (Stewart et
al., 1997, Stenner and Pearthree, 1999; Amoroso et al., 2004).
This field trip guide introduces evidence for late Quaternary
ruptures on the Hurricane Fault in Arizona, considers the neotec-
tonics implications, and places the late Quaternary deformation
within the context of the encroachment of Basin-and-Range style

Amoroso, L., and Raucei, J., 2005, Paleoseismology and geomorphology of the Hurricane Fault and Escarpment, in Pederson, I., and Dehler, C.M., eds.,
Interior Western United States: Geological Society of America Field Guide 6, p. 449-477, doi: 10.1130/2005.fld006(20). For permission to copy, contact

editing@geosociety.org. © 2005 Geological Society of America
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Figure 1. (A). Quaternary normal faults in northwestern
Arizona and southwestern Utah, compilation adapted
from Scarborough et al. (1986), Hecker (1993), and
Pearthree and Bausch (1999). Significant recent earth-
quake epicenters (stars) and the sections (bold font) of the
Hurricane Fault (Pearthree, 1998) are shown. Cottonwood
Canyon, the site of recent seismic hazard assessment work
on the Hurricane Fault in Arizona, is located north of the
Shivwils-Anderson Junction boundary (Stenner et al.,
1998). The Intermountain Seismic Belt (ISB) is a zone of
earthquake activity extending through the Intermountain
West from northwestern Montana south to Utah, southem
Nevada and northern Arizona. The approximate boundar-
ies of the ISB are shown in the inset.

Figure 2. Digital elevation model/hillshade map of the
southwestern United States showing the Colorado Pla-
teau and Basin and Range physiographic provinces. The
dashed white box shows the extent of Figure 1.



Paleoseismology and geomorphology of the Hurricane Fault and Escarpment

in the Fossil Mountain Member of the Kaibab Formation. Lower
slopes on the cliffs consist of the Woods Ranch and Seligman
Members of the Toroweap Formation, which bracket the cliff-form-
ing Brady Canyon Member. Coarse, very poorly sorted colluvium
covers much of the slope-forming units, especially the Seligman
Member. Because of the structural complexity of the Hurricane
Fault zone immediately across the valley from this vantage point,
you may see all or parts of this sequence repeated several times.

Most of the Shivwits segment is a large structural embay-
ment between two prominent convex fault bends. On the hanging
wall at the northern end of the Shivwits segment, you can see a
prominent east-sloping butte (mentioned at road-log mile 39.3),
where beds of the Triassic Moenkopi Formation are capped with
late Tertiary basalt and all are tilted toward the Hurricane Fault.
This butte is at a major convex bend in the trace of the Hurricane
Fault similar to the State Line geometric bend (Stewart and Tay-
lor, 1996). Immediately northeast of our overlook, the gravel road
of the Navajo Trail can be traced up to the Hurricane Escarpment,
where it ascends the surface of a ruptured relay ramp between
overlapping strands of the Hurricane Fault. The Grandstand,
seen south of the Navajo Trail, is a zone of multiple fault strands
associated with a left stepover. To the southeast, we can see
the Moriah Knoll basalt where it flowed across the escarpment
(Fig. 6). This is discussed at Stop 2.

Neotectonics of the Hurricane Fault

The Hurricane Fault provides excellent exposures of dis-
placed Quaternary alluvium and basalt flows for the evaluation of
seismic hazard and discerning its neotectonic history. Lund and
Everitt (1999) and Stenner and Pearthree (1999) all have identi-
fied displaced basalt and alluvium that indicate that the Hurricane
Fault has been active throughout the Quaternary. Paleoseismic
investigations of the Anderson Junction section (Fig. 1) discov-
ered evidence of several Pleistocene and Holocene surface-ruptur-
ing earthquakes. Stenner and others identified a latest Pleistocene
to early Holocene surface-rupturing most-recent event (MRE) at
Cottonwood Canyon on the Anderson Junction section {just south
of the Utah border, Fig. 1) with 0.6 m of vertical displacement
(Stenner et al., 1998). Further trenching investigations at Rock
Canyon, 4 km north of Cottonwood Canyon, revealed that the last
three events had variable amounts of slip per event (Stenner et
al., 2003). The MRE had an estimated 0.3-0.4 m net vertical slip,
whereas the penultimate and pre-penultimate events together had
~2.7-3.7 m of vertical slip. Possible scenarios to explain the lower
MRE offset at Cottonwood and Rock Canyons include the rupture
of the Shivwits that propagated north into the adjacent southern
Anderson Junction sections, or a separate rupture in the boundary
between the two sections. The size of older fault scarps at Cot-
tonwood and Rock canyons, along with estimates of earthquake
recurrence intervals (5-100 ka) in the Basin and Range province
(Stenner et al., 1998), suggest that larger slip-per-event (more than
0.6 m) is typical along this part of the Hurricane Fault,

A paleoseismic investigation here along the Shivwits section
of the Hurricane Fault revealed evidence of surface-rupturing late
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Figure 6. Mosaic of NASA high-altitude aerial photography of the
central part of the Shivwits section of the Hurricane Fault showing
fault traces, slip-rate estimates, and field trip stops. The fault strands
are from Billingsley (1994a and 1994b) and field reconnaissance. Faults
are dashed where approximate or inferred, dotted where concealed. The
relay ramp, south of the basalt flow, is evidence that fault linkage had
occurred on this portion of the fault (Peacock and Sanderson, 1994).
Shown is a compilation of the vertical surface displacement observa-
tions (the format is profile #/surface offset in m/slip-rate range in mm/
yr). Profile #7 is the Boulder Fan (outlined) trench site. The basalt flow
displaced by the Hurricane Fault originated from Moriah Knoll.

Quaternary events (Amoroso et al., 2004). Mapping did not show
any evidence of surface rupture of Holocene deposits; the only
convincing evidence of tectonic displacement was found in late
to middle(?) Pleistocene alluvial fans. Results using displacement
of the Moriah Knoll basalt (Fig. 7), topographic profiling, surface
dating, morphologic modeling of fault scarps, and observations
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Figure 7. (A) Geologic map showing the relation of the faults to the Moriah Knoll basalt (Qmb) and the mapped flow directions (heavy black
arrows). Mapped surficial units: Pkh, Harrisburg Member of the Kaibab Formation; Pt-k, Permian Toroweap and Kaibab Formations undif-
ferentiated; Qm1-3, from mid to late Pleistocene alluvium; Qy1, Holocene alluvium; Qco, Quaternary colluvium. The basalt flowed through a
paleo-canyon, crossed the fault, and covered the relay ramp surface between the escarpment and the Pkf western ridge of the relay ramp until the
ridge was overtopped and the basalt flowed further northwest (B). The basalt flow directions, estimated from flow thickness, are shown by heavy
black arrows. A—A’ is the location of the cross-section C. The letters on the map (A through F, EF, WF) refer to locations discussed in the text.
(B) Photograph looking NE toward the Hurricane Cliffs, note the relay ramp and basalt flow that crossed the escarpment, flowed across the relay
ramp, to the valley floor. (C) Cross section A—A’ showing the estimation of maximum vertical displacement of the Moriah Kunoll basalt.
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